Temporal and spatial movement characteristics of the Altyn Tagh fault inferred from 21 years of InSAR observations

  • Caijun XuEmail author
  • Sen Zhu
Original Article


We use 21 years of interferometric synthetic aperture radar data obtained between 1996 and 2017 from three European Space Agency satellites, namely the European Remote Satellite (ERS), Environmental Satellite (ENVISAT) and Sentinel-1, to estimate the present-day strain accumulation rate within the central segment of the Altyn Tagh fault (ATF) along the northern boundary of the Tibetan Plateau. We obtain the first Sentinel-1 line-of-sight velocity map, thereby revealing a velocity gradient across the main ATF. Due to significant near-fault deformation, which cannot be modeled by utilizing only the classic Savage deep slip model, a dislocation extending to a certain depth representing strain release by shallow creep is combined with a deep screw dislocation to model the observations. The best-fitting results are a 9.0 mm/year slip rate with a 20.0 km locking depth and a 2.0 mm/year creep rate with a 2.0 km creep extent for the ERS data, a 7.4 mm/year slip rate with an 18.0 km locking depth and a 1.8 mm/year creep rate with a 2.8 km creep extent for the ENVISAT data, and a 6.0 mm/year slip rate with a 21.0 km locking depth and a 1.5 mm/year creep rate with a 1.0 km creep extent for the Sentinel-1 data based on a single fault inversion. The slip rate decreases with time along this section of the ATF, while the creep rate varies around 1.8 mm/year, which does not constitute an obvious variation. In the spatial domain, the fault was divided into three segments, only Sentinel-1 data were used in the inversion, and the best-fitting values for the slip rate, locking depth, creep rate and creep extent are [7.4, 21.0, 1.8, 1.5], [6.8, 23.0, 1.5, 1.0] and [5.3, 20.0, 2.0, 1.1] for the Kuyake segment, Kulukuole segment and Aqiang segment, respectively. We conclude that deep slip motion within the ATF was variable in both the time domain and the space domain, whereas shallow creep, which must be accounted for using the Fattahi model considering both deep and shallow motions, was stable at ~ 2.0 mm/year with a creep extent of 1.0–2.0 km. The seismic moment release rate is less than 9.0% of the geodetic moment accumulation rate, which indicates a high seismic risk within the ATF.


Altyn Tagh fault InSAR Interseismic deformation Creep Seismic hazard 



The SAR data set was provided by the European Space Agency (ESA), ERS and ENVISAT data were obtained through the ESA’s Earth Observation Link (EOLi)-Sa catalog and the Sentinel-1 data were downloaded from the Sentinel Scientific Data Hub. This work was supported by National Natural Science Foundation of China (NSFC) projects (41431069, 41721003 and 41574002). The historical earthquake catalog was obtained from the China Earthquake Networks Center (CENC). Most of the figures were prepared using the Generic Mapping Tools (GMT) software (Wessel and Smith 1991).

Supplementary material

190_2019_1232_MOESM1_ESM.docx (458 kb)
Supplementary material 1 (DOCX 457 kb)


  1. Agram PS, Simons M (2015) A noise model for InSAR time series. J Geophys Res Solid Earth 120:2752–2771. CrossRefGoogle Scholar
  2. Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RJ (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486CrossRefGoogle Scholar
  3. Avouac J-P, Tapponnier P (1993) Kinematic model of active deformation in central Asia. Geophys Res Lett 20:895–898CrossRefGoogle Scholar
  4. Bendick R, Bilham R, Freymueller J, Larson K, Yin G (2000) Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature 404(6773):69–72CrossRefGoogle Scholar
  5. Berardino P, Fornaro G, Lanari R, Member S, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Geosci Remote Sens Lett 40(11):2375–2383CrossRefGoogle Scholar
  6. Biggs J, Wright T, Lu Z et al (2007) Multiinterferogram method for measuring interseismic deformation: Denali Fault, Alaska[J]. Geophys J R Astron Soc 170(3):1165–1179CrossRefGoogle Scholar
  7. Cheng F, Jolivet M, Fu S, Zhang C, Zhang Q, Guo Z (2016) Large-scale displacement along the AltynTagh fault (north Tibet) since its Eocene initiation: insight from detrital zircon U-Pb geochronology and subsurface data. Tectonophysics 677:261–279CrossRefGoogle Scholar
  8. Cowgill E (2007) Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: revisiting the Cherchen River site along the AltynTagh fault, NW China. Earth Planet Sci Lett 254(3):239–255CrossRefGoogle Scholar
  9. Cowgill E, Gold RD, Xuanhuan C, Xia-Feng W, Arrowsmith JR, Southon J (2009) Low quaternary slip rate reconciles geodetic and geologic rates along the AltynTagh fault, northern Tibet. Geology 37:647–650CrossRefGoogle Scholar
  10. Daout S, Doin M-P, Peltzer G, Lasserre C, Socquet A, Volat M, Sudhaus H (2018) Strain partitioning and present-day fault kinematics in NW Tibet from Envisat SAR interferometry. J Geophys Res Solid Earth 123:2462–2483. CrossRefGoogle Scholar
  11. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. CrossRefGoogle Scholar
  12. Elliott JR, Biggs J, Parsons B, Wright TJ (2008) InSAR slip rate determination on the AltynTagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys Res Lett 35:L12309. CrossRefGoogle Scholar
  13. Fattahi H, Amelung F (2016) InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophys Res Lett 43:8399–8406. CrossRefGoogle Scholar
  14. Garthwaite MC, Wang H, Wright TJ (2013) Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. J Geophys Res Solid Earth 118:5071–5083. CrossRefGoogle Scholar
  15. Gold RD, Cowgill E, Arrowsmith JR, Gosse J, Chen X, Wang X-F (2009) Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: a case study from Tuzidun along the AltynTagh fault, NW China. J Geophys Res 114:B04401. CrossRefGoogle Scholar
  16. Grandin R, Socquet A, Binet R, Klinger Y, Jacques E, de Chabalier J-B et al (2009) September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): constraints provided by geodetic data. J Geophys Res 114:B04401. CrossRefGoogle Scholar
  17. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350CrossRefGoogle Scholar
  18. Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapor mapping from interferometric radar measurements. Science 283(5406):1297–1299CrossRefGoogle Scholar
  19. He J, Vernant P, Chéry J, Wang W, Lu S, Ku W et al (2013) Nailing down the slip rate of the AltynTagh fault. Geophys Res Lett 40:5382–5386. CrossRefGoogle Scholar
  20. Hussain E, Hooper A, Wright TJ, Walters RJ, Bekaert DPS (2016) Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements. J Geophys Res Solid Earth 121:9000–9019. CrossRefGoogle Scholar
  21. Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F et al (2001) Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission-track constraints. Tectonophysics 343(1):111–134CrossRefGoogle Scholar
  22. Jolivet R, Cattin R, Chamot-Rooke N, Lasserre C, Peltzer G (2008) Thin-plate modeling of interseismic deformation and asymmetry across the AltynTagh fault zone. Geophys Res Lett 35:L02309. CrossRefGoogle Scholar
  23. Jolivet R, Lasserre C, Doin M-P, Peltzer G, Avouac J-P, Jianbao S et al (2013) Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: implications for fault frictional properties. Earth Planet Sci Lett 377–378:23–33CrossRefGoogle Scholar
  24. Jolivet R, Agram PS, Lin NY, Simons M, Doin M, Peltzer G, Li Z (2014) Improving InSAR geodesy using global atmospheric models. J Geophys Res Solid Earth 119:2324–2341. CrossRefGoogle Scholar
  25. Jolivet R, Simons M, Agram PS, Duputel Z, Shen Z-K (2015) Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys Res Lett 42:297–306. CrossRefGoogle Scholar
  26. Lasserre C, Cavalié O, Peltzer G, Socquet A, Doin M, Jianbao S et al (2007) Interseismic strain across the AltynTagh and Haiyuan faults at the northern edge of the Tibetan Plateau, measured by space geodesy. Geophys Res Abstr CDROM 9:10102Google Scholar
  27. Li Y, Shan X, Qu C, Liu Y, Han N (2018) Crustal deformation of the AltynTagh fault based on GPS. J Geophys Res Solid Earth. Google Scholar
  28. Manconi A, Casu F (2012) Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters. Geophys Res Lett 39:L14301. CrossRefGoogle Scholar
  29. Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac J, Vidal P et al (1996) Tectonics of western Tibet, between the Tarim and the Indus. Earth Planet Sci Lett 142(3):311–330CrossRefGoogle Scholar
  30. Mériaux A-S, Ryerson F, Tapponnier P, Van der Woerd J, Finkel R, Xu X et al (2004) Rapid slip along the central AltynTagh fault: morphochronologic evidence from Cherchen He and Sulamu Tagh. J Geophys Res 109:B06401. CrossRefGoogle Scholar
  31. Mériaux A-S, Tapponnier P, Ryerson F, Xiwei X, King G, Van der Woerd J et al (2005) The Aksay segment of the northern AltynTagh fault: tectonic geomorphology, landscape evolution, and Holocene slip rate. J Geophys Res 110:B04404. CrossRefGoogle Scholar
  32. Mériaux A-S, Van Der Woerd J, Tapponnier P, Ryerson FJ, Finkel RC, Lasserre C et al (2012) The Pingding segment of the AltynTagh fault (91e): holocene slip-rate determination from cosmogenic radio nuclide dating of offset fluvial terraces. J Geophys Res 117:B09406. CrossRefGoogle Scholar
  33. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426CrossRefGoogle Scholar
  34. Peltzer G, Saucier F (1996) Present-day kinematics of Asia derived from geologic fault rates. J Geophys Res 101(B12):27943–27956CrossRefGoogle Scholar
  35. Peltzer G, Tapponnier P, Armijo R (1989) Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet. Science 246(4935):1285–1289. CrossRefGoogle Scholar
  36. Pepe A, Lanari R, Member S (2006) On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Geosci Remote Sens Lett 44(9):2374–2383CrossRefGoogle Scholar
  37. Rousset B, Jolivet R, Simons M, Lasserre C, Riel B, Milillo P et al (2016) An aseismic slip transient on the north Anatolian fault. Geophys Res Lett 43:3254–3262. CrossRefGoogle Scholar
  38. Savage JC, Burford RO (1973) Geodetic determination of relative plate motion in central California. J Geophys Res 78(5):832–845. CrossRefGoogle Scholar
  39. Savage JC, Simpson RW (1997) Surface strain accumulation and the seismic moment tensor. Bull Seismol Soc Am 87(5):1345–1353Google Scholar
  40. Schlögel R, Doubre C, Malet J-P, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330CrossRefGoogle Scholar
  41. Segall P (2010) Earthquake and volcano deformation. Princeton Univ ersity Press, PrincetonCrossRefGoogle Scholar
  42. Strozzi T, Ambrosi C, Raetzo H (2013) Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 5(5):2554–2570CrossRefGoogle Scholar
  43. Tape C, Musé P, Simons M, Dong D, Webb F (2010) Multiscale estimation of GPS velocity fields. Geophys J Int 179(2):945–971CrossRefGoogle Scholar
  44. Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G et al (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547):1671–1677CrossRefGoogle Scholar
  45. Wadge G, Webley P, James I, Bingley R, Dodson A, Waugh S et al (2002) Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophys Res Lett 29(19):1905. CrossRefGoogle Scholar
  46. Wallace K, Yin G, Bilham R (2004) Inescapable slow slip on the AltynTagh fault. Geophys Res Lett 31:L09613. CrossRefGoogle Scholar
  47. Wang H, Liu M, Cao J, Shen X, Zhang G (2011) Slip rates and seismic moment deficits on major active faults in mainland China. J Geophys Res 116:B02405. Google Scholar
  48. Wang W, Qiao X, Yang S, Wang D (2017) Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophys J Int 208:1088–1102CrossRefGoogle Scholar
  49. Washburn Z, Arrowsmith JR, Forman SL, Cowgill E, Xiaofeng W, Yueqiao Z, Zhengle C (2001) Late Holocene earthquake history of the central AltynTagh Fault, China. Geology 29:1051–1054CrossRefGoogle Scholar
  50. Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138CrossRefGoogle Scholar
  51. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2001) GAMMA SAR and interferometric processing software. In: Proceedings of the ERS ENVISAT symposium, Gothenburg, Sweden, 16–20 OctoberGoogle Scholar
  52. Wessel P, Smith WH (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72(41):441–446CrossRefGoogle Scholar
  53. Wimpenny S, Copley A, Ingleby T (2017) Fault mechanics and post-seismic deformation at Bam, SE Iran. Geophys J Int 209(2):1018–1035CrossRefGoogle Scholar
  54. Wright TJ, Parsons B, England PC, Fielding EJ (2004) Insar observations of low slip rates on the major faults of western tibet. Science 305(5681):236–239CrossRefGoogle Scholar
  55. Xiao Q, Shao G, Liu-Zeng J, Oskin ME, Zhang J, Zhao G, Wang J (2015) Eastern termination of the AltynTagh Fault, western China: constraints from a magnetotelluric survey. J Geophys Res Solid Earth 120:2838–2858CrossRefGoogle Scholar
  56. Xu X, Wang F, Zheng R, Chen W, Ma W, Yu G et al (2005) Late quaternary sinistral slip rate along the AltynTagh fault and its structural transformation model. Sci China, Ser D Earth Sci 48(3):384–397CrossRefGoogle Scholar
  57. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28(1):211–280CrossRefGoogle Scholar
  58. Zhang P-Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32(9):809–812CrossRefGoogle Scholar
  59. Zheng G, Wang H, Wright TJ, Lou Y, Zhang R, Zhang W, Wei N (2017) Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res Solid Earth 122:9290–9312. CrossRefGoogle Scholar
  60. Zhu S, Xu C, Wen Y, Liu Y (2016) Interseismic deformation of the Altyn Tagh fault determined by interferometric synthetic aperture radar (InSAR) measurements. Remote Sens 8(3):233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Geospace Environment and GeodesyMinistry of EducationWuhanChina
  3. 3.Collaborative Innovation Center of Geospatial TechnologyWuhanChina

Personalised recommendations