Advertisement

Joint estimation of tiltmeter drift and volume variation during reservoir monitoring

  • S. FurstEmail author
  • J. Chéry
  • B. Mohammadi
  • M. Peyret
Original Article
  • 40 Downloads

Abstract

Borehole tiltmeters are widely used to continuously record small surface deformation of reservoirs and volcanoes. Because these instruments display unknown long-term drift, only short-term tilt signal can be used for monitoring purpose. We propose a method to invert long-term time series of tilt data induced by strain variations at depth. The assumption that tiltmeter drift is linear over time is on its own insufficient to remove the drift and uniquely determine the deformation source parameters. To overcome this problem, we first invert the data with no constrain on the drift to obtain one particular solution among all admissible. Then, using the linearity of the forward model, we use the statistical properties of the drift distributions to restore the uniqueness of the solution. We illustrate our approach with four synthetic cases simulating volume changes of a reservoir. We demonstrate the efficiency of our method and show that the accuracy of estimated volume variation dramatically improves if low drift tiltmeters are used.

Keywords

Modelling Tiltmeters Long-term drift Volcano geodesy Reservoirs monitoring 

Notes

Acknowledgements

The Ph.D. of S. Furst is supported by the Total Company and the LabEx NUMEV Project (No. ANR-10-LABX-20) funded by the “Investissements d’Avenir” French Government programme, managed by the French National Research Agency (ANR).

References

  1. Agnew DC (1986) Strainmeters and tiltmeters. Rev Geophys 24(3):579–624CrossRefGoogle Scholar
  2. Ali ST, Akerley J, Baluyut EC, Cardiff M, Davatzes NC, Feigl KL, Foxall W, Fratta D, Mellors RJ, Spielman P, Wang HF, Zemach E (2016) Time-series analysis of surface deformation at brady hot springs geothermal field (Nevada) using interferometric synthetic aperture radar. Geothermics 61:114–120.  https://doi.org/10.1016/j.geothermics.2016.01.008 CrossRefGoogle Scholar
  3. Anderson K, Lisowski M, Segall P (2010) Cyclic ground tilt associated with the 2004–2008 eruption of Mount St. Helens. J Geophys Res Solid Earth 115(11):1–29.  https://doi.org/10.1029/2009JB007102 Google Scholar
  4. Anderson KR, Poland MP, Johnson JH, Miklius A (2015) Episodic deflation–inflation events at Kilauea Volcano and implications for the shallow magma system. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface. Wiley, Hoboken, pp 229–250.  https://doi.org/10.1002/9781118872079.ch11 Google Scholar
  5. Astakhov DK, Roadarmel WH, Nanayakkara AS, Service H (2012) SPE 151017 a new method of characterizing the stimulated reservoir volume using tiltmeter-based surface microdeformation measurements. In SPE hydraulic fracturing technology conference, The Woodlands, pp 1–15Google Scholar
  6. Boudin F, Bernard P, Longuevergne L, Florsch N, Larmat C, Courteille C, Blum PA, Vincent T, Kammentaler M (2008) A silica long base tiltmeter with high stability and resolution. Rev Sci Instrum 79(3):1–11.  https://doi.org/10.1063/1.2829989 CrossRefGoogle Scholar
  7. Chawah P, Chéry J, Boudin F, Cattoen M, Seat HC, Plantier G, Gaffet S et al (2015) A simple pendulum borehole tiltmeter based on a triaxial optical-fibre displacement sensor. Geophys J Int 203(2):1026–1038.  https://doi.org/10.1093/gji/ggv358 CrossRefGoogle Scholar
  8. Eneva M, Adams D, Falorni G, Morgan J (2012) Surface deformation in Imperial Valley, CA, from satellite radar interferometry. GRC Trans 36:1339–1344. Retrieved from http://pubs.geothermal-library.org/lib/grc/1030405.pdf
  9. Falorni G, Morgan J, Eneva M (2011) Advanced InSAR techniques for geothermal exploration and production. GRC Trans 35:1661–1666Google Scholar
  10. Ferro A, Gambino S, Panepinto S (2011) High precision tilt observation at Mt. Etna Volcano, Italy. Acta Geophys.  https://doi.org/10.2478/s11600-011-0003-7 Google Scholar
  11. Fisher K, Warpinski N (2011) Hydraulic fracture-height growth: real data (SPE 145949). In: SPE annual technical conference and exhibition.  https://doi.org/10.2118/145949-PA
  12. Gambino S, Falzone G, Ferro A, Laudani G (2014) Volcanic processes detected by tiltmeters: a review of experience on Sicilian volcanoes. J Volcanol Geoth Res 271:43–54.  https://doi.org/10.1016/j.jvolgeores.2013.11.007 CrossRefGoogle Scholar
  13. Goulty NR (1976) Strainmeters and tiltmeters in geophysics. Tectonophysics 34(2687):245–256CrossRefGoogle Scholar
  14. Harrison JC (1976) Cavity and topographic effects in tilt and strain measurement. J Geophys Res 81(2):319–328CrossRefGoogle Scholar
  15. Heimlich C, Gourmelen N, Masson F, Schmittbuhl J, Kim SW, Azzola J (2015) Uplift around the geothermal power plant of Landau (Germany) as observed by InSAR monitoring. Geothermal Energy 3(1):1–12.  https://doi.org/10.1186/s40517-014-0024-y CrossRefGoogle Scholar
  16. Im K, Elsworth D, Guglielmi Y, Mattioli GS (2017) Geodetic imaging of thermal deformation in geothermal reservoirs—production, depletion and fault reactivation. J Volcanol Geoth Res 338:79–91.  https://doi.org/10.1016/j.jvolgeores.2017.03.021 CrossRefGoogle Scholar
  17. Ishii H, Jentzsch G, Graupner S, Nakao S, Ramatschi M, Weise A (2001) Observatory Nokogiriyama/Japan: comparison of different tiltmeters. J Geod Soc Jpn 47(1):155–160Google Scholar
  18. Ivorra B, Mohammadi B, Ramos AM (2013) Design of code division multiple access filters based on sampled fiber Bragg grating by using global optimization algorithms. Optim Eng.  https://doi.org/10.1007/s11081-013-9212-z Google Scholar
  19. Jahr T, Letz H, Jentzsch G (2006) Monitoring fluid induced deformation of the earth’s crust: a large scale experiment at the KTB location/Germany. J Geodyn 41(1–3):190–197.  https://doi.org/10.1016/j.jog.2005.08.003 CrossRefGoogle Scholar
  20. Kasdin NJ (1995) Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation. Proc IEEE 83(5):802–827.  https://doi.org/10.1109/5.381848 CrossRefGoogle Scholar
  21. Kohl ML, Levine J (1993) Measuring low frequency tilts. J Res Nat Inst Stand Technol 98(2):191.  https://doi.org/10.6028/jres.098.014 CrossRefGoogle Scholar
  22. Masterlark T, Donovan T, Feigl KL, Haney M, Thurber CH, Tung S (2016) Volcano deformation source parameters estimated from InSAR: sensitivities to uncertainties in seismic tomography. J Geophys Res Solid Earth 121(4):3002–3016.  https://doi.org/10.1002/2015JB012656 CrossRefGoogle Scholar
  23. Merlet S, Kopaev A, Diament M, Geneves G, Landragin A, Pereira Dos Santos F (2008) Micro-gravity investigations for the LNE watt balance project. Metrologia 45(3):265–274.  https://doi.org/10.1088/0026-1394/45/3/002 CrossRefGoogle Scholar
  24. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst.  https://doi.org/10.1016/j.epsl.2004.04.016 Google Scholar
  25. Mohammadi B, Pironneau O (2009) Applied shape optimization for fluids, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  26. Narváez Medina L, Arcos DF, Battaglia M (2017) Twenty years (1990–2010) of geodetic monitoring of Galeras volcano (Colombia) from continuous tilt measurements. J Volcanol Geoth Res 344:232–245.  https://doi.org/10.1016/j.jvolgeores.2017.03.026 CrossRefGoogle Scholar
  27. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82(2):1018–1040Google Scholar
  28. Peltier A, Staudacher T, Bachèlery P, Cayol V (2009) Formation of the April 2007 caldera collapse at Piton de La Fournaise volcano: insights from GPS data. J Volcanol Geoth Res 184(1–2):152–163.  https://doi.org/10.1016/j.jvolgeores.2008.09.009 CrossRefGoogle Scholar
  29. Poland MP, Miklius A, Montgomery-Brown EK (2014). Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. US Geological Survey Professional Paper 1801, 2010, pp 1–52.  https://doi.org/10.3133/pp1801
  30. Ricco C, Aquino I, Augusti V, Dauria L, Del-Gaudio C, Scarpato G (2018) Improvement and development of the tiltmetric monitoring networks of Neapolitan volcanoes. Ann Geophys.  https://doi.org/10.4401/ag-7465 Google Scholar
  31. Sakata S, Sato H (1986) Borehole-type tiltmeter and three-component Strainmeter for earthquake prediction. J Phys Earth 34(Supplement):S129–S140.  https://doi.org/10.4294/jpe1952.34.Supplement_S129 CrossRefGoogle Scholar
  32. Segall P (2010). Earthquake and Volcano deformation. In: Press PU (ed). Princeton University Press, Princeton.  https://doi.org/10.1002/0471743984.vse7429
  33. Urlaub M, Petersen F, Gross F, Bonforte A, Puglisi G, Guglielmino F, Kopp H et al (2018) Gravitational collapse of Mount Etna’s southeastern flank. Sci Adv 4(10):1–8.  https://doi.org/10.1126/sciadv.aat9700 CrossRefGoogle Scholar
  34. Van Camp M, Francis O (2007) Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J Geod 81(5):337–344.  https://doi.org/10.1007/s00190-006-0110-4 CrossRefGoogle Scholar
  35. Vasco D, Wicks C, Karasaki K (2002) Geodetic imaging: high resolution reservoir monitoring using satellite interferometry. Geophys J Int 149:555–571CrossRefGoogle Scholar
  36. Vasco DW, Karasaki K, Nakagome O (2002b) Monitoring production using surface deformation: the Hijiori test site and the Okuaizu geothermal field, Japan. Geothermics 31(3):303–342.  https://doi.org/10.1016/S0375-6505(01)00036-0 CrossRefGoogle Scholar
  37. Vasco DW, Rutqvist J, Ferretti A, Rucci A, Bellotti F, Dobson P, Hartline C et al (2013) Monitoring deformation at the Geysers geothermal field, California using C-band and X-band interferometric synthetic aperture radar. Geophys Res Lett 40(11):2567–2572.  https://doi.org/10.1002/grl.50314 CrossRefGoogle Scholar
  38. Wang H, Hsu HT, Zhu YZ (2002) Prediction of surface horizontal displacements, and gravity and tilt changes caused by filling the three gorges reservoir. J Geod 76(2):105–114.  https://doi.org/10.1007/s00190-001-0228-3 CrossRefGoogle Scholar
  39. Warpinski N (2014) Surface tiltmeters: a proven tool for new answers in unconventional reservoir stimulations. Pinnacle-Halliburton, HoustonGoogle Scholar
  40. Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9–10):483–494.  https://doi.org/10.1007/s00190-002-0283-4 CrossRefGoogle Scholar
  41. Wright CA, Davis E, Weijers L, Minner WA, Hennigan CM, Golich GM (1997) Horizontal hydraulic fractures: oddball occurrences or practical engineering concern? In: Proceedings of SPE western regional meeting.  https://doi.org/10.2118/38324-MS
  42. Wright CA, Davis EJ, Minner WA, Ward JF, Weijers L, Technologies P, Laboratories N (1998) Surface tiltmeter fracture mapping reaches new depths − 10,000, and beyond? In: SPE rocky mountain regional meeting, April, SPE 39919Google Scholar
  43. Wu L, Li T, Chen Z, Li H (2015) A new capacitive borehole tiltmeter for crustal deformation measurement and its performance analysis. Int J Min Sci Technol 25(2):285–290.  https://doi.org/10.1016/j.ijmst.2015.02.018 CrossRefGoogle Scholar
  44. Wyatt F, Cabaniss G, Agnew DC (1982) A comparison of tiltmeters at tidal frequencies. Geophys Res Lett 9(7):743–746.  https://doi.org/10.1029/GL009i007p00743 CrossRefGoogle Scholar
  45. Xu C, Ding K, Cai J, Grafarend EW (2009) Methods of determining weight scaling factors for geodetic-geophysical joint inversion. J Geodyn 47(1):39–46.  https://doi.org/10.1016/j.jog.2008.06.005 CrossRefGoogle Scholar
  46. Zhou J, Zeng Y, Jiang T, Zhang B, Zhang X (2015) Tiltmeter hydraulic fracturing mapping on a cluster of horizontal wells in a tight gas reservoir. In: SPE/IATMI Asia pacific oil and gas conference and exhibition. BaliGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GM, University of Montpellier and University of Antilles, CNRSMontpellierFrance
  2. 2.IMAG University of Montpellier, CNRSMontpellierFrance

Personalised recommendations