Skip to main content
Log in

Laser geodetic satellites: a high-accuracy scientific tool

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Satellite Laser Ranging (SLR) began in the mid-1960s on satellites of opportunity with retro-reflectors intended as a part of intercomparison tests of satellite tracking techniques. Shortly thereafter, data from these satellites began to work their way into geodetic solutions and dedicated geodesy experiments. By early 1970s when future requirements for centimeter accuracy were envisioned, planning began for dedicated, spherical retro-reflector geodetic satellites. Built with high mass-to-area ratios, these satellites would have important applications in gravity field modeling, station geolocation and fiducial reference systems, Earth rotation, and fundamental physics. Early geodetic satellites were Starlette, launched in 1975 by Centre National d’Etudes Spatiales (CNES), and LAGEOS in 1976 by the National Aeronautics and Space Administration (NASA). Recent geodetic satellites include LARES, launched in 2012, and LARES-2 under development, both by the Italian Space Agency (ASI). Today, a complex of these ‘geodetic satellites’ from low to high altitude Earth orbits supports many space geodesy requirements. This paper will discuss the evolution of the geodetic satellites from the early days, through current programs and out to future needs as we approach our goal for millimeter accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altamimi Z, Rebischung P, Metivier L, Xavier C (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  • Appleby GM (1998) Long-arc analyses of SLR observations of the Etalon geodetic satellites. J Geod 72(6):333–342. https://doi.org/10.1007/s001900050172

    Article  Google Scholar 

  • Appleby G, Rodrguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90:1371. https://doi.org/10.1007/s00190-016-0929-2

    Article  Google Scholar 

  • Barlier F, Lefebvre M (2001) A new look at planet Earth: satellite geodesy and geoscience. In: Bleeker JAM, Geiss J, Huber MCE (eds) The century of space science. Springer, Dordrecht, pp 1623–1651. https://doi.org/10.1007/978-94-010-0320-9_66

    Chapter  Google Scholar 

  • Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot C, Barlier F, Laurain O, Gegout P, Schwintzer P, Reigber C, Bode A, König R, Massmann F-H, Raimondo J-C, Schmidt R, ZhuS Yuan (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys Res Lett 27(22):3611–3614. https://doi.org/10.1029/2000GL011721

    Article  Google Scholar 

  • Bloßfeld M, Müller H, Gerstl M, Štefka V, Bouman J, Göttl F, Horwath M (2015) Second-degree Stokes coefficients from multi-satellite SLR. J Geod 89(9):857–871. https://doi.org/10.1007/s00190-015-0819-z

    Article  Google Scholar 

  • Bloßfeld M, Gerstl M, Hugentobler U, Angermann D, Müller H (2014) Systematic effects in LOD from SLR observations. Adv Space Res 54:1049–1063. https://doi.org/10.1016/j.asr.2014.06.009

    Article  Google Scholar 

  • Bloßfeld M, Rudenko S, Kehm A, Panadina N, Müller H, Angermann D, Hugentobler U, Seitz M (2018) Consistent estimation of geodetic parameters from SLR satellite constellation measurements. J Geod 92:1003–1021

    Article  Google Scholar 

  • Bourda G (2008) Length-of-day and space-geodetic determination of the Earths variable gravity field. J Geod 82(4):295–305. https://doi.org/10.1007/s00190-007-0180-y

    Article  Google Scholar 

  • Burmistrov V B, Parkhomenko N N, Pliev L F, Shargorodsky V D, Soyuzova N M, Vasiliev V P (1998) The westpac satellite: design features and first results of return signal analysis. In: Procedings of the 11 th international workshop on laser ranging, Deggendorf, Germany, 21–25 Sept, pp 297

  • Cazenave A, Daillet S (1981) Lunar tidal acceleration from Earth satellite orbit analyses. J Geophys Res 86(B6):1659–1663. https://doi.org/10.1029/JB086iB03p01659

    Article  Google Scholar 

  • Chao B, Eanes R (1995) Global gravitational changes due to atmospheric mass redistribution as observed by the Lageos nodal residual. Geophys J Int 122:755–764

    Article  Google Scholar 

  • Chen J, Wilson C (2008) Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging. J Geophys Res 113:B06402. https://doi.org/10.1029/2007JB005397

    Article  Google Scholar 

  • Chen J, Wilson C, Eanes R, Nerem R (1999) Geophysical interpretation of observed geocenter variations. J Geophys Res 104:2683–2690

    Article  Google Scholar 

  • Cheng M, Tapley BD (2001) Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 104(B2):2667–2681. https://doi.org/10.1029/1998JB900036

    Article  Google Scholar 

  • Cheng M, Ries J, Tapley B (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116(B01):409

    Google Scholar 

  • Cheng M, Tapley B, Ries J (2013) Deceleration in the Earth’s oblateness. J Geophys Res 118:740–747. https://doi.org/10.1002/jgrb.50058

    Article  Google Scholar 

  • Christodoulidis DC, Smith DE, Kolenkiewicz R, Klosko SM, Torrence MH, Dunn PJ (1985) Observing tectonic plate motions and deformations from satellite laser ranging. J Geophys Res 90(B11):9249–9263. https://doi.org/10.1029/JB090iB11p09249

    Article  Google Scholar 

  • Ciufolini I, Wheeler JA (1995) Gravitation and inertia. Princeton University Press, Princeton. ISBN: 0-691-03323-4

    Book  Google Scholar 

  • Ciufolini I, Pavlis EC, Chieppa F, Fernandes-Vieira E, Pérez-Mercader J (1998) Test of general relativity and measurement of the lense-thirring effect with two earth satellites. Science 279:2100–2103. https://doi.org/10.1126/science.279.5359.2100

    Article  Google Scholar 

  • Ciufolini I, Pavlis EC (2004) A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431(7011):958–960. https://doi.org/10.1038/nature03007

    Article  Google Scholar 

  • Ciufolini I (2007) Dragging of inertial frames. Nature 449(7158):41–47. https://doi.org/10.1038/nature06071

    Article  Google Scholar 

  • Ciufolini I, Paolozzi A, Pavlis E, König R, Ries J, Gurzadyan V, Penrose R, Sindoni G, Paris C, Khachatryan H, Mirzoyan S (2016) A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: measurement of Earth’s dragging of inertial frames. Eur Phys J C 76:120. https://doi.org/10.1140/epjc/s10052-016-3961-8

    Article  Google Scholar 

  • Ciufolini I, Paolozzi A, Pavlis EC, Sindoni G, Koenig R, Ries JC, Matzner R, Gurzadyan V, Penrose R, Rubincam D, Paris C (2017a) A new laser-ranged satellite for general relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur Phys J Plus 132(8):336. https://doi.org/10.1140/epjp/i2017-11635-1

  • Ciufolini I, Pavlis EC, Sindoni G, Ries JC, Paolozzi A, Matzner R, Koenig R, Paris C (2017b) A new laser-ranged satellite for general relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur Phys J Plus 132(8):337. https://doi.org/10.1140/epjp/i2017-11636-0

  • Cox C, Chao B (2002) Detection of a large scale mass redistribution in the terrestrial system since 1998. Science 297:831–833

    Article  Google Scholar 

  • Degnan J (2016) Reducing the satellite contribution to range error. In: 20th International workshop on laser ranging, Potsdam, Germany, 2016. https://cddis.nasa.gov/lw20/docs/2016/papers/66-Degnan_paper.pdf

  • Devoti R, Luceri V, Sciaretta C, Bianco G, Di Donato G, Vermeersen LLA, Sadabini R (2001) The SLR secular gravity variations and their impact on the inference of mantle rheology and lithospheric thickness. Geophys Res Lett 28(5):855–858. https://doi.org/10.1029/2000GL011566

    Article  Google Scholar 

  • Dick G, Gendt G, Montag H, Nischan T, Sommerfeld W (1993) Results of ETALON data analysis. In: Montag H, Reigber C (eds) Geodesy and physics of the Earth: geodetic contributions to geodynamics. Springer, Berlin, pp 315–318. https://doi.org/10.1007/978-3-642-78149-0_73

    Chapter  Google Scholar 

  • Dickey J, Marcus S, de Viron O, Fukumori I (2002) Recent Earth’s oblateness variations: unraveling climate and postglacial rebound effects. Science 298:1975–1977. https://doi.org/10.1126/science.1077777

    Article  Google Scholar 

  • Dow J, Agrotis L (1986) Polar motion and Earth rotation series from LAGEOS. Adv Space Res 6:17–21

    Article  Google Scholar 

  • Dunn P, Torrence M, Kolenkiewicz R, Smith D (1999) Earth scale defined by modern satellite ranging observations. Geophys Res Lett 26(10):1489–1492

    Article  Google Scholar 

  • Eanes RJ, Schutz BE, Tapley BD (1983) Earth and ocean tide effects on LAGEOS and Starlette. Proceedings ninth international symposium earth tides. E. Schweinzerbert’she Verlagbuchhandlong, Stiuggart, pp 236–249

    Google Scholar 

  • Exertier P, Nicolas N, Berio P, Coulot D, Bonnefond P, Laurain O (2004) The Role of laser ranging for calibrating Jason-1: the Corsica tracking campaign. Mar Geod 27(1–2):333–340. https://doi.org/10.1080/01490410490476272

    Article  Google Scholar 

  • Förste C, Stubenvoll R, König R, Raimondo J-C, Barthelmes F, Kusche J, Dahle C, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S (2009) Evaluation of EGM2008 by comparison with other recent global gravity field models. Newton’s Bull 4:26–37

    Google Scholar 

  • Gaposchkin EM, Lambeck K (1971) Earth’s gravity field to the sixteenth degree and station coordinates from satellite and terrestrial data. J Geophys Res 76(29):4855–4883. https://doi.org/10.1029/JB076i020p04855

    Article  Google Scholar 

  • Gaposchkin EM (1979) Lageos orbital analysis in support of validation. Smithsonian astrophysics observatory (SAO), Grant NSG 5261, final report. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790015288.pdf

  • Gutierrez R, Wilson C (1987) Seasonal air and water redistribution effects on the Lageos and Starlette. Geophys Res Lett 14(9):929–932

    Article  Google Scholar 

  • He M, Tapley BD, Eanes RJ (1982) Earth rotation parameters deduced from Starlette laser ranging. Sci Sir Ser A Eng Trans 25(10):1090–1098. https://doi.org/10.1360/ya1982-25-10-1090

    Article  Google Scholar 

  • Henriksen SW (ed) (1977) National Geodetic Satellite Program, Part 1 and 2, NASA-SP-365-PT-1/2, 19780003602/78N11545. NASA, Washington, DC, United States

    Google Scholar 

  • Kaula W M (1969) The terrestrial environment: solid—Earth and ocean physics, report of a study at Williamstown, Massachusetts, sponsored by NASA-Electronics Research Center and MIT Measurement Systems Laboratory

  • Krebs G (2017) Gunter’s space page. Etalon 1, 2. http://space.skyrocket.de/doc_sdat/etalon.htm

  • König R, Bode A, Chen Z, Reigber C (1997) Surface forces parameterization of GFZ-1 orbits and gravity field recovery. Adv Space Res 19(11):1677–1680. https://doi.org/10.1016/S0273-1177(97)00324-4

    Article  Google Scholar 

  • König R, Chen Z, Reigber C, Schwintzer P (1999) Improvement in global gravity field recovery using GFZ-1 satellite laser tracking data. J Geodesy 73(8):398–406. https://doi.org/10.1007/s001900050259

    Article  Google Scholar 

  • Kucharski D, Lim H, Kirchner G, Koidl F (2014) Spin parameters of low earth orbiting satellites Larets and Stella determined from satellite laser ranging data. Adv Space Res 53(1):90–96

    Article  Google Scholar 

  • Kucharski D, Kirchner G, Lim H, Koidl F (2011) Optical response of nanosatellite BLITS measured by the Graz 2 kHz SLR system. Adv Space Res 48(8):1335–1340. https://doi.org/10.1016/j.asr.2011.06.016

    Article  Google Scholar 

  • Kucharski D, Otsubo T, Kirchner G, Bianco G (2012) Spin rate and spin axis orientation of LARES spectrally determined from satellite laser ranging data. Adv Space Res 50(11):473–477

    Article  Google Scholar 

  • Kucharski D, Kirchner G, Otsubo T, Koidl F (2015) A method to calculate zero-signature satellite laser ranging normal points for millimeter geodesy–a case study with Ajisai. Earth Planets Space 67:34. https://doi.org/10.1186/s40623-015-0204-4

    Article  Google Scholar 

  • Lejba P, Schillak S, Wnuck E (2007) Determination of orbits and SLR stations coordinates on the basis laser observations of the satellites Starlette and Stella. Adv Space Res 40(1):143–149. https://doi.org/10.1016/j.asr.2007.01.067

    Article  Google Scholar 

  • Lejba P, Schillak S (2011) Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv Space Res 47(4):654–662. https://doi.org/10.1016/j.asr.2010.10.013

    Article  Google Scholar 

  • Lerch F, Klosko S, Patel G, Wagner C (1985) A gravity model for crustal dynamics (GEML2). J Geophys Res 90(B11):9301–9311. https://doi.org/10.1029/JB090iB11p09301

    Article  Google Scholar 

  • Luceri V, Pavlis E C, Kuzmicz-Cieslak M, Evans K, Pirri M, Bianco G (2019) The contribution of satellite laser ranging to the development of the ITRF2014. J Geod (submitted)

  • Minott P O, Zagwodzki T Q, Varghese T, Seldon M (1993) Prelaunch optical characterization of the laser geodynamic satellite (LAGEOS 2), NASA technical paper 3400

  • Moore P, Zhang Q, Alothman A (2005) Annual and semiannual variations of the Earth’s gravitational field from satellite laser ranging and CHAMP. J Geophys Res. https://doi.org/10.1029/2004JB003448

  • Nastula J, Gross R (2015) Chandler wobble parameters from SLR and GRACE. J Geophys Res Solid Earth 120:4474–4483. https://doi.org/10.1002/2014JB01182

    Article  Google Scholar 

  • Otsubo T, Amagai J, Kunimori H (1999) The center-of-mass correction of the geodetic satellite AJISAI for single-photon laser ranging. IEEE Trans Geosci Remote Sens 37(4):2011–2018

    Article  Google Scholar 

  • Paolozzi A, Ciufolini I, Paris C, Sindoni G (2015) LARES: a new satellite specifically designed for testing general relativity. Int J Aerosp Eng 2015:9. https://doi.org/10.1155/2015/341384

    Article  Google Scholar 

  • Paolozzi A (2019) Studies on the materials of LARES 2 satellite. J Geod (submitted)

  • Pavlis E C (1994) High resolution earth orientation parameters from LAGEOS SLR data analysis at GSFC. In: IERS technical note 16, 1994

  • Pavlis E C (1999) Fortnightly resolution geocenter series: a combined analysis of LAGEOS 1 and 2 SLR data (1993–96). In: IERS technical note 25, Observatoire de Paris, April 1999

  • Pavlis EC (2002) Dynamical determination of origin and scale in the earth system from satellite laser ranging, in vistas for geodesy in the new millennium. In: Adam J, Schwarz K-P (eds) Proceedings of the 2001 international association of geodesy scientific assembly, Budapest, Hungary, 2–7 Sept 2001, pp 36–41. Springer-Verlag, New York. https://doi.org/10.1007/978-3-662-04709-5_7

    Google Scholar 

  • Pavlis E C, Kuźmicz-Cieślak M (2009) Geocenter motion: causes and modeling approaches. In: Schillak S (ed) Proceedings of 16th international laser workshop, pp 16–26. Space Research Center, Polish Academy of Sciences, Warszawa, Poland

  • Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Peltier WR (1983) Constraint on deep mantle viscosity from LAGEOS acceleration data. Nature 304:434–436

    Article  Google Scholar 

  • Reigber C, Balmino G, Mller H, Bosch W, Moynot B (1985) GRIM gravity model improvement using LAGEOS (GRIM31). J Geophys Res 90(B11):9285–9299. https://doi.org/10.1029/JB090iB11p09285

    Article  Google Scholar 

  • Ries JC, Eanes RJ, Shum CK, Watkins MM (1992) Progress in the determination of the gravitational coefficient of the Earth. Geophys Res Lett 19(6):529–531. https://doi.org/10.1029/92GL00259

    Article  Google Scholar 

  • Rubincam DP (1987) LAGEOS orbit decay due to infrared radiation from Earth. J Geophys Res 92(B2):1287–1294. https://doi.org/10.1029/JB092iB02p01287

    Article  Google Scholar 

  • Rubincam D (1984) Postglacial rebound observed by LAGEOS and the effective viscosity of the lower mantle. J Geophys Res 89:1077–1088

    Article  Google Scholar 

  • Rubincam D (1990) Drag on the LAGEOS satellite. J Geophys Res 95:4881–4886

    Article  Google Scholar 

  • Rutkowska M, Jagoda M (2010) Estimation of the elastic earth parameters using the SLR LAGEOS 1 and LAGEOS 2 data. Acta Geophys 58:705. https://doi.org/10.2478/s11600-009-0062-1

    Article  Google Scholar 

  • Rutkowska M, Jagoda M (2012) Estimation of the elastic earth parameters using slr data for the low satellites STARLETTE and STELLA. Acta Geophys 60(4):1213–1223. https://doi.org/10.2478/s11600-012-0045-5

    Article  Google Scholar 

  • Schutz B E, Cheng M K, Shum C K, Eanes R J, Tapley B D (1989) Analysis of earth rotation solution from Starlette. J Geophys Res. https://doi.org/10.1029/JB094iB08p10167

    Article  Google Scholar 

  • Schutz BE, Cheng MK, Eanes RJ, Shum CK, Tapley BD (1993) Geodynamic results from starlette orbit analysis. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: Earth dynamics, vol 24. AGU, Washington, pp 175–190. https://doi.org/10.1029/GD024p0175

    Chapter  Google Scholar 

  • Sengoku A (1998) A plate motion study using Ajisai. Earth Planet Space 50:611. https://doi.org/10.1186/BF03352156

    Article  Google Scholar 

  • Smith DE, Kolenkiewicz R, Dunn PJ (1973a) A determination of the earth tidal amplitude and phase from the orbital perturbations of the Beacon Explorer C spacecraft. NASA GSFC No. 19730020633

  • Smith DE, Lerch FJ, Wagner C A (1973b) A gravitational field model for the Earth. Space research XIII. In: Proceedings of the fifteenth plenary meeting, Madrid, Spain, 10–24 May 1972, vol 1, pp 11–20, (A73-41325 21-13) Berlin, East Germany, Akademie-Verlag GmbH

  • Smith DE, Christodoulidis DC, Kolenkiewicz R, Dunn PJ, Klosko SM, Torrence MH, Fricke S, Blackwell S (1985) A global geodetic reference frame from LAGEOS ranging (SL5.1AP). J Geophys Res 90(B11):9221–9233. https://doi.org/10.1029/JB090iB11p09221

    Article  Google Scholar 

  • Smith D, Kolenkiewicz R, Dunn P, Robbins J, Torrence M, Klosko S, Williamson R, Pavlis E, Douglas N, Fricke S (1990) Tectonic motion and deformation from satellite laser ranging to LAGEOS. J Geophys Res 95:22013–22041

    Article  Google Scholar 

  • Sokolov A, Sadovnikov M, Shargorodskiy V, Vasiliev V (2016) SC BLITS-M. In: Presented at the ILRS missions standing committee, October 2016, Potsdam, Germany

  • Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769. https://doi.org/10.1007/s00190-013-0644-1

    Article  Google Scholar 

  • Sośnica K, Jäggi A, Thaller D, Dach R, Beutler G (2014) Contribution of Starlette Stella and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. https://doi.org/10.1007/s00190-014-0722-z

    Article  Google Scholar 

  • Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable Earths gravity field from SLR satellites. J Geod 89(10):945–960. https://doi.org/10.1007/s00190-015-0825-1

    Article  Google Scholar 

  • Sośnica K, Bury G, Zajdel R (2018) Contribution of multi-GNSS constellation to SLR-derived terrestrial reference frame. Geophys Res Lett. https://doi.org/10.1002/2017GL076850J

  • Tapley B, Schutz B, Eanes R (1985) Station coordinates, baselines, and earth rotation from LAGEOS laser ranging: 1976–1984. J Geophys Res 90:9235–9248

    Article  Google Scholar 

  • Thaller D, Sośnica K, Steigenberger P, Roggenbuck O, Dach R (2015) Pre-combined GNSS-SLR Solutions: What Could be the Benefit for the ITRF? In: International association of geodesy symposia, Springer Berlin Heidelberg. https://doi.org/10.1007/1345_2015_215

    Chapter  Google Scholar 

  • Torrence M, Dunn P, Kolenkiewicz R (1995) Characteristics of the LAGEOS and ETALON Satellites Orbits. Adv Space Res 16(12):21–24

    Article  Google Scholar 

  • Vokrouhlicky D, Farinella P (1997) Thermal force effects on slowly rotating, spherical artificial satellitesII. Earth infrared heating. Planet Space Sci 45:419–425. https://doi.org/10.1016/S0032-0633(96)00147-X

    Article  Google Scholar 

  • Vokrouhlicky D, Farinella P (1998) The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for the plane-parallel case. Astronom J 116(4):2032

    Article  Google Scholar 

  • Weiffenbach G C, Hoffman TE (1970) A passive stable satellite for earth-physics applications (cannonball a satellite for accurate laser ranging). Smithsonian Astrophysical Observatory (SAO), special report no. 329,

  • Williamson RG, Marsh JG (1985) Starlette geodynamics: the Earth’s tidal response. J Geophys Res. https://doi.org/10.1029/JB090iB11p09346

    Article  Google Scholar 

  • Willis P, Deleflie F, Barlier F, Bar-Sever YE, Romans LJ (2005) Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct-Nov 2003) using DORIS and SLR data. Adv Space Res 36(3):522–533. https://doi.org/10.1016/j.asr.2005.03.029

    Article  Google Scholar 

  • Yoder C, Williams J, Dickey J, Schutz B, Eanes R, Tapley B (1983) Secular variations of Earth’s gravitational harmonic \(J_{2}\) coefficient from Lageos and nontidal acceleration of Earth rotation. Nature 303:757–762

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ILRS for providing the ground stations and the laser ranging data of all the satellites described in the paper. M.R. Pearlman and D. Arnold acknowledge the support of NASA Grant 80NSSC18K0220. F. Barlier and R. Biancale acknowledge the support of CNES and the Observatoire de la Cte dAzur/GEOAZUR. I. Ciufolini and A. Paolozzi acknowledge the Italian Space Agency for the support of the LARES and LARES 2 space missions under agreements No. 2017-23-H.0 and No. 2015-021-R.0. E. C. Pavlis acknowledges the support of NASA Grant NNX15AT34A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pearlman.

Additional information

Coauthor Mark Davis is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearlman, M., Arnold, D., Davis, M. et al. Laser geodetic satellites: a high-accuracy scientific tool. J Geod 93, 2181–2194 (2019). https://doi.org/10.1007/s00190-019-01228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01228-y

Keywords

Navigation