Journal of Geodesy

, Volume 93, Issue 5, pp 669–680 | Cite as

A gravitational telescope deformation model for geodetic VLBI

  • Sten BergstrandEmail author
  • Magnus Herbertsson
  • Carsten Rieck
  • Jörgen Spetz
  • Claes-Göran Svantesson
  • Rüdiger Haas
Original Article


We have measured the geometric deformations of the Onsala 20 m VLBI telescope utilizing a combination of laser scanner, laser tracker, and electronic distance meters. The data put geometric constraints on the electromagnetic raypath variations inside the telescope. The results show that the propagated distance of the electromagnetic signal inside the telescope differs from the telescope’s focal length variation, and that the deformations alias as a vertical or tropospheric component. We find that for geodetic purposes, structural deformations of the telescope are more important than optic properties, and that for geodetic modelling the variations in raypath centroid rather than focal length should be used. All variations that have been identified as significant in previous studies can be quantified. We derived coefficients to model the gravitational deformation effect on the path length and provide uncertainty intervals for this model. The path length variation due to gravitational deformation of the Onsala 20 m telescope is in the range of 7–11 mm, comparing elevation 0\(^{\circ }\) and 90\(^{\circ }\), and can be modelled with an uncertainty of 0.3 mm.


VLBI Telescope deformation Systematic errors Terrestrial reference frames 



We thank in particular the Onsala personnel who have supported this project on several occasions, and also the SIB60 project of the European Metrology Research Program, EMRP. The EMRP is jointly funded by the EMRP participating countries and the European Union.


  1. Abbondanza C, Sarti P (2010) Effects of illumination functions on the computation of gravity-dependent signal path variation models in primary focus and Cassegrainian VLBI telescopes. J Geod 84(8):515–525. CrossRefGoogle Scholar
  2. Appleby G, Rodrguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90(12):1371–1388. CrossRefGoogle Scholar
  3. Artz T, Springer A, Nothnagel A (2014) A complete VLBI delay model for deforming radio telescopes: the Effelsberg case. J Geod 88(12):1145–1161. CrossRefGoogle Scholar
  4. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. CrossRefGoogle Scholar
  5. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. CrossRefGoogle Scholar
  6. Beraldin J-A, Gaiani M (2005) Evaluating the performance of close-range 3D active vision systems for industrial design applications. In: SPIE proceedings, vol 5665, no VIII.
  7. Bergstrand S, Collilieux X, Dawson J, Haas R, Long J, Pavlis EC, Saunier J, Schmid R, Nothnagel A (2017) Resolution on the nomenclature of space geodetic reference points and local tie measurements.
  8. Clark TA, Thomsen P (1988) Deformations in VLBI antennas. NASA Technical Memorandum 100696, Goddard Space Flight Center, Greenbelt, MAGoogle Scholar
  9. Dawson J, Sarti P, Johnston GM, Vittuari L (2007) Indirect approach to invariant point determination for SLR and VLBI systems: an assessment. J Geod 81(6):433–441. CrossRefGoogle Scholar
  10. Doiron T, Stoup J (1997) Uncertainty and dimensional calibrations. J Res Natl Inst Stand Technol 102(6):647–676.
  11. Eschelbach C, Haas R, Lösler M (2013) Automated IVS reference point monitoring—first experience from the Onsala Space Observatory. In: Zubko N, Poutanen M (eds) Proceedings of the 21th European VLBI for geodesy and astrometry (EVGA) working meeting, reports of the Finnish Geodetic Institute, pp 249–253Google Scholar
  12. Fey AL, Gordon D, Jacobs CS (eds) (2009) The second realization of the international celestial reference frame by very long baseline interferometry. Presented on behalf of the IERS / IVS Working Group. IERS Technical Note 35, Frankfurt am Main: Verlag des Bundesamts fr Kartographie und Geodäsie. ISBN 3-89888-918-6.
  13. Greve A, Bremer M (2010) Thermal design and thermal behaviour of radio telescopes and their enclosures, vol 364. Astrophysics and Space Science Library. Springer, Berlin. ISBN 978-3-642-03867-9Google Scholar
  14. Gross R, Herring T (2017) IAG GGOS IERS unified analysis workshop, 10–12 July 2017, Paris, France.
  15. Holst C, Schunck D, Nothnagel A, Haas R, Wennerbäck R, Olofsson H, Hammargren R, Kuhlmann H (2017) Terrestrial laser scanner two-face measurements for analyzing the elevation-dependent deformation of the Onsala Space Observatory 20-m radio telescope’s main reflector in a bundle adjustment. Sensors 17(8):1833. CrossRefGoogle Scholar
  16. ITRS-PC (2016) ITRF2014.
  17. Johansson L A, Stodne F, Wolf S (1996) The PISA project—variations in the height of the foundation of the 20 meter radio telescope. Research report 178, Department of Radio and Space Science with Onsala Space Observatory, Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  18. Katow M S (1981) DSS 14 64-m antenna-computed RF pathlength changes under gravity loadings. TDA Progress Report 4264, pp 123–131. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  19. Lemoine FG, Schrama EJO (eds) (2009) Scientific applications of DORIS in space geodesy. Adv Space Res 58(12):2477–2774Google Scholar
  20. Lösler M, Haas R, Eschelbach C (2013) Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory. J Geod 87(8):791–804. CrossRefGoogle Scholar
  21. Lösler M, Haas R, Eschelbach C (2016) Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting—investigations during CONT14 at the Onsala Space Observatory. J Geod 90(5):467–486. CrossRefGoogle Scholar
  22. Leica Geosystems (n.d.) HDS7000 data sheet. Retrieved 03 June 2018.
  23. Leica Geosystems (n.d.) LT(D)800 data sheet. Retrieved 03 June 2018.
  24. MacMynowski DG, Andersen T (2010) Wind buffeting of large telescopes. Appl Opt 49(4):625–636.
  25. Micro-Epsilon (n.d.) optoNCDT ILR data sheet. Retrieved 03 June 2018.
  26. National Research Council (2010) Precise geodetic infrastructure: national requirements for a shared resource. The National Academies Press, Washington, DC. ISBN 978-0-309-15811-4Google Scholar
  27. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8):787–792. CrossRefGoogle Scholar
  28. Otoshi T Y, Young L E (1982) An experimental investigation of the changes of VLBI time delays due to antenna structural deformations. TDA progress report 42-68, pp 218–225. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  29. Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, p 332. ISBN 978-3-642-02686-7Google Scholar
  30. Ray J (2016) Precision, accuracy, and consistency of GNSS products. In: Grafarend E (ed) Encyclopedia of geodesy. Springer, Cham. ISBN 978-3-319-02370-0Google Scholar
  31. Sarti P, Vittuari L, Abbondanza C (2009) Laser scanner and terrestrial surveying applied to gravitational deformation monitoring of large VLBI telescopes’ primary reflector. J Surv Eng 135(4):136–148.
  32. Sarti P, Abbondanza C, Petrov L, Negusini M (2011) Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis. J Geod 85(1):1–8. CrossRefGoogle Scholar
  33. Schüler T, Kronschnabl G, Plötz C, Neidhardt A, Bertarini A, Bernhart S, Nothnagel A (2015) Initial results obtained with the first TWIN VLBI radio telescope at the Geodetic Observatory Wettzell. Sensors 15(8):18767–18800. CrossRefGoogle Scholar
  34. United Nations General Assembly (2015) A global geodetic reference frame for sustainable development. UN resolution A/RES/69/266.
  35. Wilson T, Rohlfs K, Hüttemeister S (2014) Tools of radio astronomy. Springer, Berlin. ISBN 978-3-642-39950-3Google Scholar
  36. Wresnik J, Böhm J, Haas R, Schuh H (2007) Thermal deformation of radio telescopes Onsala and Wettzell. In: Behrend D, Baver K (eds) International vlbi service for geodesy and astrometry 2006 general meeting proceedings, pp 300–303, NASA/CP-2006-214140.
  37. Zernecke R (1999) Seasonal variations in height demonstrated at the radiotelescope reference point. In: Schlüter W, Hase H (eds) Proceedings of the 13th working meeting on European VLBI for geodesy and astrometry, pp 15–18Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institutes of SwedenBoråsSweden
  2. 2.Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden

Personalised recommendations