Journal of Geodesy

, Volume 93, Issue 4, pp 593–614 | Cite as

Atmospheric refraction and system stability investigations in short-baseline VLBI observations

  • S. HalsigEmail author
  • A. Bertarini
  • R. Haas
  • A. Iddink
  • J. Kodet
  • G. Kronschnabl
  • A. Neidhardt
  • A. Nothnagel
  • C. Plötz
  • T. Schüler
Original Article


Geodetic very long baseline interferometry observations of radio telescopes, which are located in an immediate neighborhood, provide an optimal experimental setup for investigations in atmospheric refraction and system stability issues. In this study, a series of dedicated VLBI sessions with very short baselines, referred to as WHISP (Wettzell HIgh SPeed) sessions, has been designed. Six sessions were observed, three on a 123-m baseline only and another three adding to the short baseline the VLBI telescope at Onsala in Sweden. New is that these sessions and their analysis benefit from the high velocities of the radio telescopes in changing from radio source to radio source providing an unprecedented number of observations on such a short baseline and consequently an extremely reliable parameter estimation. The resulting European triangle is used to compare atmospheric time series derived by two adjacent baselines. Before this could be done, the stability of the observing system, in particular the noise contributions induced by the stability of the hydrogen maser clocks and the correlation process, is investigated to separate the individual uncertainty components. We determined the uncertainty level of the observing systems to be on the order of 10 ps. We were also able to quantify the effect of applying manual phase calibration instead of scan-by-scan system calibration, which is on the order of about 20 ps in this specific example and therefore not negligible. It could be substantiated that estimating clock parameters in geodetic VLBI absorb other effects because direct H-Maser comparisons produce variations at the 5–10 ps level while clock estimates are a factor of 3–6 times larger. Atmospheric refraction has been investigated at different stages: Zenith wet delays were estimated in a differential model for one station relative to the other station and in an absolute sense using two adjacent baselines between the two Wettzell antennas and the Onsala telescope. In both cases, the variations in the estimated atmospheric parameters are found to be of the order of only 1–3 mm and the remaining variations are assigned to unmodeled random effects, particularly refractivity fluctuations in the neutral atmosphere. This was confirmed by introducing an atmospheric turbulence model yielding WRMS post-fit residuals between 7 and 20 ps when clock and correlator effects have been subtracted.


Close-range VLBI Atmospheric refraction Troposphere Small-scale refractivity fluctuations Atmospheric turbulence Clock system stability 



Sebastian Halsig thanks the German Research Foundation (Deutsche Forschungsgemeinschaft) for its financial support (No. 318/10-1).


  1. Artz T, Halsig S, Iddink A, Nothnagel A (2016) ivg::ASCOT: the development of a new VLBI Software Package. In: Behrend D, Baver KD, Armstrong K (eds) IVS 2016 General Meeting Proceedings, “New Horizons with VGOS”, Johannesburg, South Africa, March 13–19 2016, pp 217–221Google Scholar
  2. Bevis M, Businger S, Herring T, Rocken C, Anthes R, Ware R (1992) GPS meteorology—remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97:15787–15801CrossRefGoogle Scholar
  3. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. Google Scholar
  4. Böhm J, Salstein D, Alizadeh M, Wijaya D, Schuh H (2013) Geodetic and atmospheric background. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Berlin, pp 73–136CrossRefGoogle Scholar
  5. Brunner F, Rüeger J (1992) Theory of the local scale parameter method for EDM. Bulletin Géodésique 66:355–364CrossRefGoogle Scholar
  6. Crewell S, Mech M, Reinhardt T, Selbach S, Betz HD, Brocard E, Dick G, O’Connor EJ, Fischer J, Hanisch T, Hauf T, Huenerbein A, Delobbe L, Mathes A, Peters G, Wernli H, Wiegner M, Wulfmeyer V (2008) The general observation period 2007 within the priority program on quantitative precipitation forecasting: concept and first results. Meteorologische Zeitschrift 17(6):849–866CrossRefGoogle Scholar
  7. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry—effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607. CrossRefGoogle Scholar
  8. De Boor C (1978) A practical guide to splines, applied mathematical sciences, vol 27. Springer, HeidelbergCrossRefGoogle Scholar
  9. Dousa J, Bennitt GV (2013) Estimation and evaluation of hourly updated global GPS zenith total delays over ten months. GPS Solut 17(4):453–464. CrossRefGoogle Scholar
  10. Dick G, Gendt G, Reigber C (2001) First experience with near real-time water vapor estimation in a German GPS network. J Atmos Solar-Terr Phys 63:1295–1304CrossRefGoogle Scholar
  11. Drewes H, Kuglitsch F, Adám J, Rózsa S (2016) The geodesist’s handbook 2016, vol 90. Springer, BerlinGoogle Scholar
  12. Elgered GK (1982) Tropospheric wet path-delay measurements. IEEE Trans Antennas Propag 30(3):502–505CrossRefGoogle Scholar
  13. Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58. CrossRefGoogle Scholar
  14. Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag H, Pearlman M (eds) Global geodetic observing system. Springer, BerlinGoogle Scholar
  15. Halsig S, Artz T, Iddink A, Nothnagel A (2016) Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis. Earth Planets Space 68:106. CrossRefGoogle Scholar
  16. Halsig S, Corbin A, Iddink A, Jaron F, Schubert T, Nothnagel A (2017) Current development progress in ivg::ASCOT—a new VLBI analysis software. In: Proceedings of the 23nd European VLBI group for geodesy and astrometry working meeting, Gothenburg, Sweden, 15–19 May 2017, pp 167–171Google Scholar
  17. Hase H, Petrov L (1999) The first campaign of observations with the VLBI-module of TIGO. In: Schlüter W, Hase H (eds) Proceedings of the 13th Working Meeting on European VLBI for Geodesy and Astrometry, 12–13 February 1999, Viechtach/Wettzell, Bundesamt für Kartographie und Geodäsie, pp 19–24Google Scholar
  18. Heinkelmann R, Böhm J, Bolotin S, Engelhardt G, Haas R, Lanotte R, MacMillan DS, Negusini M, Skurikhina E, Titov O, Schuh H (2011) VLBI-derived tropospheric parameters during CONT08. J Geodesy 85:377–393. CrossRefGoogle Scholar
  19. IVS Master files (2018) International VLBI service for geodesy and astrometry, multi-agency schedule files. Accessed 12 Jan 2018
  20. Kermarrec G, Schön S (2014) On the Mátern covariance family: a proposal for modeling temporal correlations based on turbulence theory. J Geodesy 88(11):1061–1079. CrossRefGoogle Scholar
  21. Koch KR (2013) Parameter estimation and hypothesis testing in linear models. Springer, BerlinGoogle Scholar
  22. Kodet J, Panek P, Prochazka I (2016a) Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability. Metrologia 53:18–26CrossRefGoogle Scholar
  23. Kodet J, Schreiber U, Panek P, Prochazka I, Männel B, Schüler T (2016b) Optical two-way timing system for space geodesy applications. In: 2016 European frequency and time forum, 4–7 April 2016, York, UKGoogle Scholar
  24. Kodet J, Schreiber U, Eckl J, Plötz C, Mähler S, Schüler T, Klügel T, Riepl S (2018) Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target. J Geodesy. Google Scholar
  25. Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady 30:301–305Google Scholar
  26. MacMillan DS (1997) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044. CrossRefGoogle Scholar
  27. Martí-Vidal I, Krichbaum T, Marscher A, Alef W, Bertarini A, Bach U, Schinzel F, Rottmann H, Anderson J, Zensus J, Bremer M, Sanchez S, Lindqvist M, Mujunen A (2012) On the calibration of full-polarization 86 GHz global VLBI observations. Astron Astrophys 542:A107. CrossRefGoogle Scholar
  28. Matérn B (1960) Spatial variation—stochastic models and their application to some problems in forest survey and other sampling investigations. Meddelanden Från Statens SkogsforskningsinstitutGoogle Scholar
  29. Niell A (2015) Status report on the GGAO-Westford VGOS systems. In: Haas R, Colomer F (eds) Proceedings of the 22th working meeting on European VLBI for geodesy and astrometry, 18–21 May 2015, Ponta Delgada, pp 80–84Google Scholar
  30. Niell A, Beaudoin C, Cappallo R, Corey B, Titus M (2013) First results with the GGAO12M VGOS System. In: Zubko N, Poutanen M (eds) Proceedings of the 21th working meeting on European VLBI for geodesy and astrometry, March 5–8, 2013, Espoo, Finland, Reports of the Finnish Geodetic Institute, pp 29–32Google Scholar
  31. Niell A, Beaudoin C, Bolotin S, Cappallo R, Corey B, Gipson J, Gordon D, McWhirter R, Ruszczyk C, SooHoo J (2014) VGOS operations and geodetic results. In: Behrend D, Baver KD, Armstrong K (eds) IVS 2014 general meeting proceedings, “VGOS: the new VLBI network”, 2–7 March 2014, Shanghai, China. Science Press (Beijing), pp 97–101. ISBN 978-7-03-042974-2Google Scholar
  32. Niell A, Cappallo R, Corey B, Eckert C, Elosegui P, McWhirter R, Rajagopalan G, Ruszczyk C, Titus M (2016) VGOS observations with Westford, GGAO, and the new station at Kokee, Hawaii. In: Behrend, D, Baver KD, Armstrong K (eds) IVS 2016 general meeting proceedings, “New horizons with VGOS”, Johannesburg, South Africa, March 13–19 2016, pp 44–48Google Scholar
  33. Nilsson T, Davis JL, Hill EM (2009) Using ground-based GPS to characterize atmospheric turbulence. Geophys Res Lett 36:L16807. CrossRefGoogle Scholar
  34. Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2002 general meeting proceedings, Tsukuba, Japan, February 4–7 2002, pp 260–264Google Scholar
  35. Nothnagel A, International VLBI Service for Geodesy and Astrometry (IVS) (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry. GFZ Data Services.
  36. Nothnagel A, Artz T, Behrend D, Malkin Z (2016) International VLBI service for geodesy and astrometry Delivering high-quality products and embarking on observations of the next generation. J Geodesy. Google Scholar
  37. Nothnagel A, Holst C, Haas R (2018) A VLBI delay model for gravitational deformations of the Onsala 20 m radio telescope (in preparation)Google Scholar
  38. Pánek P, Kodet J, Procházka I (2013) Accuracy of two-way time transfer via a single coaxial cable. Metrologia 50(1):60CrossRefGoogle Scholar
  39. Pany A, Böhm J, MacMillan D, Schuh H, Nilsson T, Wresnik J (2011) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geodesy 85(1):39–50. CrossRefGoogle Scholar
  40. Petit G, Luzum B (2010) IERS conventions 2010. IERS Technical Note 35, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. ISSN: 1019-4568Google Scholar
  41. Petrachenko, B, Niell A, Behrend D, Corey B, Böm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2008) Design aspects of the VLBI2010 system: progress report of the IVS VLBI2010 committee. In: Behrend D, Baver K (eds) IVS 2008 Annual Report. NASA/TP-2009-214183, pp 13–67Google Scholar
  42. Ray J, Corey B (1991) Current precision of VLBI multi-band delay observables. In: Proceedings of the AGU chapman conference on geodetic VLBI: monitoring global change, NOAA Technical Report NOS 137 NGS 49. April 22–26, 1991, Washington, D.C., USA, pp 123–134Google Scholar
  43. Schön S, Brunner F (2008) A proposal for modelling physical correlations of GPS phase observations. J Geodesy 82(10):601–612. CrossRefGoogle Scholar
  44. Schüler T, Kronschnabel G, Plötz C, Neidhardt A, Bertarini A, Bernhart S, la Porta L, Halsig S, Nothnagel A (2015) Initial results obtained with the first twin VLBI radio telescope at the geodetic observatory wettzell. Sensors 15(8):18,767–18,800. CrossRefGoogle Scholar
  45. Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454. CrossRefGoogle Scholar
  46. Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A Math Phys Eng Sci 164(919):476–490. CrossRefGoogle Scholar
  47. Teke K, Nilsson T, Böhm B, Hobiger T, Steigenberger P, García-Espada S, Haas R, Willis P (2013) Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J Geodesy 87(10–12):981–1001. CrossRefGoogle Scholar
  48. Thompson A, Moran J, Swenson G Jr (2001) Interferometry and synthesis in radio astronomy. Wiley, HobokenCrossRefGoogle Scholar
  49. Vennebusch M, Schön S, Weinbach U (2011) Temporal and spatial stochastic behaviour of high-frequency slant tropospheric delays from simulations and real GPS data. Adv Space Res 47:1681–1690CrossRefGoogle Scholar
  50. Wheelon AD (2004) Electromagnetic scintillation, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  51. Whitney AR (1974) Precision geodesy and astrometry via very-long-baseline interferometry. Ph.D. Thesis, MIT, Cambridge MA, USAGoogle Scholar
  52. Whitney AR (2000) How do VLBI correlators work? In: Vandenberg NR, Baver KD (eds) IVS 2000 general meeting proceedings, Kötzting, Germany, February 21–24 2000, pp 187–205Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  2. 2.Deutsches Zentrum für Luft- und RaumfahrtBonnGermany
  3. 3.Department for Earth and Space Sciences, Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden
  4. 4.Research Facility Satellite Geodesy, Geodetic Observatory WettzellTechnical University of MunichBad KötztingGermany
  5. 5.Federal Agency for Cartography and GeodesyGeodetic Observatory WettzellBad KötztingGermany

Personalised recommendations