Advertisement

Time and laser ranging: a window of opportunity for geodesy, navigation, and metrology

  • P. Exertier
  • A. Belli
  • E. Samain
  • W. Meng
  • H. Zhang
  • K. Tang
  • A. Schlicht
  • U. Schreiber
  • U. Hugentobler
  • I. Prochàzka
  • X. Sun
  • J. F. McGarry
  • D. Mao
  • A. Neumann
Original Article
  • 11 Downloads

Abstract

Recent progress in the domain of time and frequency (T/F) standards requires important improvements in existing time distribution links, in term of accuracy in particular. Satellite Laser Ranging (SLR) has proven to be a fundamental tool, offering a straightforward, conceptually simple, highly accurate, and unambiguous observable. Several time transfers by laser link projects have been carried out over the past 10 years with numerous scientific and metrological objectives. Depending on the mission, SLR is used to transmit time over two-way or one-way distances from 500 to several millions of kilometer. The following missions and their objectives employed this technique: European Laser Timing (ELT, expected in 2020) at 450 km, Time Transfer by Laser Link (T2L2) at 1336 km, Laser Time Transfer at 36,000 km, Lunar Reconnaissance Orbiter at 350,000 km, and MErcury Surface, Space ENvironment, GEochemistry, and Ranging at tens of million km. This article describes the synergy between SLR and T/F technologies developed on the ground and in space and as well as the state of the art of their exploitation. The performance and sources of limitation of such space missions are analyzed. It shows that current and future challenges lie in the improvement in the time accuracy and stability of the time for ground geodetic observatories. The role of the next generation of SLR systems is emphasized both in space and at ground level, from the point of view of Global Geodetic Observing System and valuable exploitation of the synergy between time synchronization, ranging, and data transfer.

Keywords

Time transfer Laser ranging Geodesy Navigation Space and ground reference frames 

Notes

Acknowledgements

The authors want to thank SLR stations of the ILRS network for providing ranging data to numerous space missions including GNSS satellites. They want to thank the Labex FIRST-TF for its support in 2017, and DLR for the orbit prediction and analysis data of the ISS to perform the relativistic correction tests. Finally, the authors want to thank the reviewers for helpful and very constructive remarks

References

  1. Abshire JB, Sun X, Afzal R (2000) Mars orbiter laser altimeter: receiver model and performance analysis. Appl Opt 39:2449–2460CrossRefGoogle Scholar
  2. Abshire JB, Sun X, Riris H, Sirota JM, McGarry JF, Palm S, Yi D, Liiva P (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02CrossRefGoogle Scholar
  3. Abshire JB, Sun X, Neumann GA, McGarry JF, Zagwodzki T, Jester P, Riris H, Zuber MT, Smith DE (2007) Laser pulses from Earth detected at Mars. In: Conference on laser and electro optics/international quantum electronics conference (CLEO/IQEC), Paper CThT6Google Scholar
  4. Albee A, Palluconi FD, Arvidson RE (1998) Mars global surveyor mission: overview and status. Science 279:1671–1672CrossRefGoogle Scholar
  5. Ashby N, Allan DW (1979) Practical implication of relativity for a global coordinate time scale. Radio Sci 14(4):649–669CrossRefGoogle Scholar
  6. Auriol A, Tourain C (2010) DORIS system: the new age. Adv Space Res 46:1484–1496CrossRefGoogle Scholar
  7. Bauer S, Hussmann H, Oberst J, Dirkx D, Mao D, Neumann GA, Zuber MT (2016) Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data. Planet Space Sci 129:32–46CrossRefGoogle Scholar
  8. Belli A, Exertier P, Samain E, Courde C, Vernotte F, Jayles C, Auriol A (2016) Temperature, radiation and aging analysis of the DORIS Ultra Stable Oscillator by means of the Time Transfer by Laser Link experiment on Jason-2. Adv Space Res 58(12):2589–2600CrossRefGoogle Scholar
  9. Belli A, Exertier P, Pavlis EC, Lemoine FG (2017) Time bias of laser ranging observations. In: Proceeding of the ILRS technical workshop improving ILRS performance to meet future GGOS requirements. Riga, Latvia, p 2017Google Scholar
  10. Bloch M, Mancini O, McClelland T (2008) History and performance of FEI space-class oscillators. In: Proceedings of the 40th annual precise time and time interval (PTTI) meeting, pp 29–50Google Scholar
  11. Buccino DR, Seubert JA, Asmar SW, Park RS (2016) Optical ranging measurement with a lunar orbiter: limitations and potential. J Spacecr Rocket 53:457–463CrossRefGoogle Scholar
  12. Cash P, Emmons D, Welgemoed J (2008) Ultrastable oscillators for space applications. In: Proceedings of he 40th annual precise time and time interval (PTTI) meeting. pp 51–56Google Scholar
  13. Cacciapuoti L, Salomon C (2009) Space clocks and fundamental tests: the ACES experiment. Eur Phys J Special Top 172:57–68CrossRefGoogle Scholar
  14. Cavanaugh JF, Smith JC, Sun X et al (2007) The mercury laser altimeter instrument for the MESSENGER mission. Sp Sci Rev 131:451–479CrossRefGoogle Scholar
  15. Cooper SB, Jensen JR, Weaver GL (2012) MESSENGER onboard time keeping accuracy during the first year in orbit at Mercury. In: Proceedings of the 44th annual precise time and time interval (PTTI) meeting, pp 361–370Google Scholar
  16. Degnan JJ (1993) Millimeter accuracy satellite laser ranging: a review. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: technology. American Geophysical Union, Washington, pp 133–162CrossRefGoogle Scholar
  17. Degnan JJ (2002) Asynchronous laser transponders for precise interplanetary ranging and time transfer. J Geodyn 34:551–594CrossRefGoogle Scholar
  18. Dehant V, Park R, Dirkx D, Iess L, Neumann G, Turyshev S (2017) Van Hoolst T survey of capabilities and applications of accurate clocks: directions for planetary science. Space Sci Rev 212:1433–1451CrossRefGoogle Scholar
  19. Dirkx D, Noomen R, Visser PNAM, Gurvits LI, Vermeersen LLA (2016) Space-time dynamics estimation from space mission tracking data. Astron Astrophys 587:A156CrossRefGoogle Scholar
  20. Djerroud K, Samain E, Clairon A, Acef O, Man N, Lemonde P, Wolf P (2010) A coherent optical link through the turbulent atmosphere. In: Proceeding of the EFTF-2010 24th European frequency and time forum, IEEE, pp 1–6Google Scholar
  21. Exertier P, Samain E, Courde C et al (2016) Sub-ns comparison between calibrated GPS(CV) and T2L2 links. Metrologia 53(6):1395CrossRefGoogle Scholar
  22. Exertier P, Belli A, Lemoine JM (2017) Time biases in laser ranging observations: a concerning issue of space geodesy. Adv Space Res 60:948–968CrossRefGoogle Scholar
  23. Fernandez A, Sanchez M, Beck T, Amarillo F (2010) Future satellite navigation system architecture: inter-satellite ranging and orbit determination. In: ION international technical meeting, San Diego, CAGoogle Scholar
  24. Fernandez FA (2011) Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data. Adv Space Res 47:786–801CrossRefGoogle Scholar
  25. Hess MP, Stringhetti L, Hummelsberger B, Hausner K, Stalford R, Nasca R, Léger B et al (2011) The ACES mission: system development and test status. Acta Astronautica 69(11—-12):929–938CrossRefGoogle Scholar
  26. JPL-DSAC (2017) Deep space atomic clock. https://www.nasa.gov/mission_pages/tdm/clock/index.html
  27. Kalisz J (2004) Review of methods for time interval measurements with picosecond resolution. Metrologia 41:17–32CrossRefGoogle Scholar
  28. Kouba J (2015) A guide to using International GNSS service (IGS) products. https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products
  29. Laurent P, Massonnet D, Cacciapuoti L, Salomon C (2015) The ACES/PHARAO space mission. Comptes-Rendus Acad Sci 16:540CrossRefGoogle Scholar
  30. Lee SW, Schutz BE, Lee CB, Yang SH (2008) A study on the common-view and all-in-view GPS time transfer using carrier-phase measurements. Metrologia 45:156–167CrossRefGoogle Scholar
  31. Leute J, Petit G, Exertier P, Samain E, Rovera DG, Uhrich P (2018) High accuracy continuous time transfer with GPS IPPP and T2L2. In: Proceeding of the 32nd EFTFT meeting, advanced GNSS session, Paper 7126Google Scholar
  32. Lion G, Panet I, Wolf P, Guerlin C, Bize S, Delva P (2017) Determination of a high spatial resolution geopotential model using atomic clock comparisons. J Geodesy 91(6):597–611CrossRefGoogle Scholar
  33. Lisdat C, Grosche G, Quintin N et al (2016) A clock network for geodesy and fundamental science. Nat Commun 7:12443CrossRefGoogle Scholar
  34. Lombardi MA (2008) The use of GPS disciplined oscillators as primary frequency standards for calibration and metrology laboratories. Measure 3(3):56–65Google Scholar
  35. Magruder L, Silverberg E, Webb C, Schutz B (2005) In situ timing and pointing verification of the ICESat altimeter using a ground-based system. Geophys Res Lett 32(21). https://doi.org/10.1029/2005GL023504
  36. Mao D, McGarry J, Torrence, et al. (2011) Laser ranging experiment on Lunar Reconnaissance Orbiter: timing determination and orbit constraints. In: 17th international workshop on laser ranging, Bad Koetzting, GermanyGoogle Scholar
  37. Mao D, Sun X, Skillman D, et al. (2014) Time-transfer experiments between satellite laser ranging stations via one-way laser ranging to the Lunar Reconnaissance Orbiter. In: 19th international workshop on laser ranging, Annapolis, MarylandGoogle Scholar
  38. Mao D, McGarry JF, Mazarico et al (2017) The laser ranging experiment of the lunar reconnaissance orbiter. Icarus 283:55–69CrossRefGoogle Scholar
  39. Marz S, Schlicht A, Bamann C (2016) Relativistic corrections in the European laser timing (ELT) experiment. Astron Astrophys 370:320Google Scholar
  40. Meng W, Zhang H, Huang P et al (2013) Design and experiment of onboard laser time transfer in Chinese BeiDou navigation satellites. Adv Space Res 51:951–958CrossRefGoogle Scholar
  41. Meng W, Zhang H, Zhang Z, Prochazka I (2013) The application of single photon detector technique in laser time transfer for Chinese navigation satellites. In: Proceeding SPIE 8773, photon counting applications IV; and quantum optics and quantum information transfer and processing, 87730E.  https://doi.org/10.1117/12.2020766
  42. Neumann GA, Barker MH, Mao D, et al. (2014) Interplanetary spacecraft laser ranging: the quest for 1 AU. In: Proceeding of the 19th international workshop on laser ranging, Annapolis, MarylandGoogle Scholar
  43. Norton JR, Cloeren JM (1996) Brief history of the development of ultra-precise oscillators for ground and space applications. In: Proceedings of the 1996 IEEE international frequency control symposium, pp 46–57Google Scholar
  44. Paschalidis N et al (2002) A CMOS time-of-flight system-on-a-chip for space instrumentation. IEEE Trans Nucl Sci 49(3):1156–1163CrossRefGoogle Scholar
  45. Pearlman M, Noll C, McGarry J, Gurtner W, Pavlis E (2009) The international laser ranging service. Adv Geosci 13:129–153Google Scholar
  46. Petit G, Wolf P (2005) Relativistic theory for time comparisons: a review. Metrologia 42(3):S138CrossRefGoogle Scholar
  47. Prochazka I, Kodet J, Blazej J (2016) Space qualified photon counting detector for laser time transfer with picosecond precision and stability. Rev Sci Instrum 7(5):056102CrossRefGoogle Scholar
  48. Rajan JA, Orr M, Wang P (2003) On-orbit validation of GPS IIR autonomous navigation. In: ION 59th annual meeting/CIGTF 22nd guidance test symposium, Albuquerque, NMGoogle Scholar
  49. Ray J, Senior K (2005) Geodetic techniques for time and frequency comparisons using GPS phase and code measurements. Metrologia 42:215–232CrossRefGoogle Scholar
  50. Rovera GD, Torre JM, Sherwood R, Abgrall M, Courde C, Laas-Bourez M, Uhrich P (2014) Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties. Metrologia 51(5):476CrossRefGoogle Scholar
  51. Rowlands DD, Pavlis DE, Lemoine FG, Neumann GA, Luthcke SB (1999) The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys Res Lett 26(9):1191–1194CrossRefGoogle Scholar
  52. Samain E et al (2008) T2L2 experiment on Jason-2 and further experiments. Int J Mod Phys D 17(7):1043–1054CrossRefGoogle Scholar
  53. Samain E, Vrancken P, Guillemot P, Fridelance P, Exertier P (2014) Time transfer by laser link (T2L2): characterization and calibration of the flight instrument. Metrologia 51(5):503CrossRefGoogle Scholar
  54. Samain E, Exertier P, Courde C, Fridelance P, Guillemot P, Laas-Bourez M, Torre JM (2015) Time transfer by laser link: a complete analysis of the error budget. Metrologia 52:423–432CrossRefGoogle Scholar
  55. Samain E, Rovera GD, Torre J-M, Courde C, Belli A, Exertier P, Uhrich P, Guillemot Ph, Sherwood R, Xue D, Xingwei H, Zhang Z, Meng W, Zhongpin Z (2018) Time transfer by laser link (T2L2) in non-common view between Europe and China. In: Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Special Issue,  https://doi.org/10.1109/TUFFC.2018.2804221
  56. Sanchez M, Pulido JA, Amarillo F, Gerner JL (2008) The ESA ”GNS+“ project. Inter-satellite ranging and communication links in the frame of the GNSS infrastructure evolutions. In: ION GNSS 21th international technical meeting of the satellite devision, Savannah, GAGoogle Scholar
  57. Schlicht A, Schreiber U, Prochazka I, Cacciapuoti L (2012) The european laser timing experiment (ELT) and data centre (ELT-DC); Mitteilung des Bundesamtes für Kartographie und Geodäsie. In: Proceeding of the 17th international workshop on laser ranging, Vol. 48Google Scholar
  58. Schreiber KU, Kodet J, Schlicht A, Prochazka I, Eckl J, Herold G (2014) European laser time transfer (ELT) and laser safety for the ISS. In: Proceedings of the 18th international workshop on laser ranging, pp 1–5Google Scholar
  59. Schreiber KU, Kodet J (2017) The application of coherent local time for optical time transfer and the quantification of systematic errors in satellite laser ranging. Space Sci Rev 214(1):22CrossRefGoogle Scholar
  60. Schutz BE, Zwally HJ, Schuman CA, Hancock D, Dimarzio JP (2005) Overview of the ICESat mission. Geophys Res Lett 32(21). https://doi.org/10.1029/2005GL024009
  61. Shargorodsky VD, Pasynkov VV, Sadovnikov MA, Chubykin AA (2013) Laser GLONASS: Era of extended precision. Glonass Herald 14:22–26Google Scholar
  62. Smith DE, Zuber MT, Sun X, Neumann GA, Cavanaugh JF, McGarry JF, Zagwodzki TW (2006) Two-way laser link over interplanetary distance. Science 331:53CrossRefGoogle Scholar
  63. Smith DE, Zuber MT, Jackson GB et al (2010) The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci Rev 150(1–4):209–241CrossRefGoogle Scholar
  64. Smith DE, Zuber MT (2017) The transfer of earth-time to the planets. In: The science of time 2016, astrophysics and space science proceedings, 50 Springer, New York, pp 319–328Google Scholar
  65. Sosnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geodesy 89:725–743.  https://doi.org/10.1007/s00190-0015-0810-8 CrossRefGoogle Scholar
  66. Solomon SC, McNutt RL Jr, Gold RE, Domingue DL (2007) MESSENGER mission overview. Space Sci Rev 131:3–39CrossRefGoogle Scholar
  67. Sun X, Skillman DR, McGarry JF, Neumann GA, Mao D, Torrence MH, Hoffman ED (2013) Time transfer between satellite laser ranging stations via simultaneous laser ranging to the Lunar Reconnaissance Orbiter. In: Proceeding of the 18th international workshop on laser ranging, Fujiyoshida, Japan, Poster 13-Pos54Google Scholar
  68. Thaller D, Dach R, Seitz M, Beutler G, Marayen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geodesy 85:257–272.  https://doi.org/10.1007/s00190-010-0433-z CrossRefGoogle Scholar
  69. Tooley CR, Houghton MB, Saylor RS, Peddie C, Everett DF, Baker CL, Safdie KN (2010) Lunar reconnaissance orbiter mission and spacecraft design. Space Sci Rev 150(1–4):23–62CrossRefGoogle Scholar
  70. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39:1515–1523CrossRefGoogle Scholar
  71. Wang K, Rothacher M (2013) Stochastic modeling of high-stability ground clocks in GPS analysis. J Geodesy 87:427–437.  https://doi.org/10.1007/s00190-013-0616-5 CrossRefGoogle Scholar
  72. Weaver G, Reinhart M, Miranian M (2004) Development in ultra-stable quartz oscillators for deep space reliability. In: 36th annual precise time and time interval (PTTI) meeting, WashingtonGoogle Scholar
  73. Weinbach U, Schön S (2011) GNSS receiver clock modelling when using high precision oscillators and IST impact on PPP. Adv Space Res 47:229.  https://doi.org/10.1016/j.ar.201006031 CrossRefGoogle Scholar
  74. Wolf P (2000) Satellite orbit and ephemeris determination using inter satellite links. PhD Thesis Universität der Bundeswehr MuenchenGoogle Scholar
  75. Zuber MT (2006) Seconds of data, years of trying. Photonics Spectra 40(5):56–58Google Scholar
  76. Zuber MT, Smith DE, Zellar RS et al (2010) The lunar reconnaissance orbiter laser ranging investigation. Space Sci Rev 150:63–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Exertier
    • 1
  • A. Belli
    • 1
    • 4
  • E. Samain
    • 1
  • W. Meng
    • 2
  • H. Zhang
    • 2
  • K. Tang
    • 2
  • A. Schlicht
    • 3
  • U. Schreiber
    • 3
  • U. Hugentobler
    • 3
  • I. Prochàzka
    • 3
  • X. Sun
    • 4
  • J. F. McGarry
    • 4
  • D. Mao
    • 4
  • A. Neumann
    • 4
  1. 1.CNRS-OCA-UNSGeoazurValbonneFrance
  2. 2.Shanghai Astronomical Observatory, CASShanghaiChina
  3. 3.TUMMunichGermany
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations