Skip to main content

Advertisement

Log in

Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011

  • Short Note
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

There are two spurious jumps in the atmospheric part of the Gravity Recovery and Climate Experiment-Atmosphere and Ocean De-aliasing level 1B (GRACE-AOD1B) products, which occurred in January-February of the years 2006 and 2010, as a result of the vertical level and horizontal resolution changes in the ECMWFop (European Centre for Medium-Range Weather Forecasts operational analysis). These jumps cause a systematic error in the estimation of mass changes from GRACE time-variable level 2 products, since GRACE-AOD1B mass variations are removed during the computation of GRACE level 2. In this short note, the potential impact of using an improved set of 6-hourly atmospheric de-aliasing products on the computations of linear trends as well as the amplitude of annual and semi-annual mass changes from GRACE is assessed. These improvements result from 1) employing a modified 3D integration approach (ITG3D), and 2) using long-term consistent atmospheric fields from the ECMWF reanalysis (ERA-Interim). The monthly averages of the new ITG3D-ERA-Interim de-aliasing products are then compared to the atmospheric part of GRACE-AOD1B, covering January 2003 to December 2010. These comparisons include the 33 world largest river basins along with Greenland and Antarctica ice sheets. The results indicate a considerable difference in total atmospheric mass derived from the two products over some of the mentioned regions. We suggest that future GRACE studies consider these through updating uncertainty budgets or by applying corrections to estimated trends and amplitudes/phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Barletta VR, Sorensen LS, Forsberg R (2012) Variability of mass changes at basin scale for Greenland and Antarctica. Cryosphere Discuss 6:3397–3446. doi:10.5194/tcd-6-3397-2012

    Article  Google Scholar 

  • Baur O, Kuhn M, Featherstone WE (2013) Continental mass change from GRACE over 2002–2011 and its impact on sea level. J Geod 87(2):117–125. doi:10.1007/s00190-012-0583-2

    Article  Google Scholar 

  • Brunnabend S-E, Rietbroek R, Timmermann R, Schröter J, Kusche J (2011) Improving mass redistribution estimates by modeling ocean bottom pressure uncertainties. J Geophys Res Oceans 116(C8). doi:10.1029/2010JC006617

  • Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass with GRACE. Geophys Res Lett 31. doi:10.1029/2004GL020461

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. J Geophys Res Oceans 118(7):3704–3711

    Article  Google Scholar 

  • Duan J, Shum CK, Guo J, Huang Z (2012) Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change. Geophys J Int 191:83–87. doi:10.1111/j.1365-246X.2012.05640.x

    Article  Google Scholar 

  • Einarsson I, Höchner A, Wang R, Kusche J (2010) Gravity changes due to the Sumatra-Andaman and Nias earthquakes as detected by the GRACE satellites: a reexamination. Geophys J Int 183(2):733–747. doi:10.1111/j.1365-246X.2010.04756.x

    Article  Google Scholar 

  • Fenoglio-Marc L, Rietbroek R, Grayek S, Becker M, Kusche J, Stanev E (2012) Water mass variation in the Mediterranean and Black Sea. J Geodyn 59–60, 168–182. doi:10.1016/j.jog.2012.04.001

  • Flechtner F (2007a) AOD1B product description document, Version 3.1, GRACE. Project Document JPL, pp 327–750, http://isdc.gfz-potsdam.de/grace

  • Flechtner F (2007b) GFZ Level-2 processing standards document for level-2 product release 0004, GRACE 327–743, Rev. 1.0. Technical Report, Geoforschungszentrum, Potsdam

  • Flechtner F, Thomas M, Dobslaw H (2010) Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. Advanced technologies in earth sciences, 2010. Part 2, pp131–142. doi:10.1007/978-3-642-10228-8_11

  • Flechtner F, Dahle C, Gruber C, König R, Michalak G, Neumayer K-H (2013) The GFZ RL05 GRACE gravity field model time series, Poster EGU2013-2993. Geophys Res Abstr, vol 15, EGU2013-2993, EGU General Assembly 2013, Vienna, Austria

  • Forootan E, Awange J, Kusche J, Heck B, Eicker A (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens Environ 124:427–443. doi:0.1016/j.rse.2012.05.023

    Article  Google Scholar 

  • Forootan E, Didova O, Kusche J, Löcher A (2013) Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. J Geophys Res Solid Earth 118:2382–2396. doi:10.1002/jgrb.50160

    Article  Google Scholar 

  • Forootan E, Rietbroek R, Kusche J, Sharifi MA, Awange J, Schmidt M, Omondi P, Famiglietti J (2014) Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. J Remote Sens Environ 140: 580–595. doi:10.1016/j.rse.2013.09.025

  • Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86(7):477–497. doi:10.1007/s00190-011-0532-5

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Technical report rep 327. Department of Geodesy and Science and Surveying, Ohio State University, Columbus

  • Jacob Th, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi:10.1038/nature10847

    Article  Google Scholar 

  • Jensen L, Rietbroek R, Kusche J (2013) Land water contribution to sea level from GRACE and Jason-1 measurements. J Geophys Res Oceans 118(1). doi:10.1002/jgrc.20058

  • Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432. doi:10.1111/j.1365-246X.2008.03922.x

    Article  Google Scholar 

  • Klees R, Zapreeva EA, Winsemius HC, Savenije HHG (2007) The bias in GRACE estimates of continental water storage variations. Hydrol Earth Syst Sci Discuss 11:1227–1241

    Article  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  • Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the Earth system. J Geodyn 59–60: 1–8. doi:10.1016/j.jog.2012.03.003

  • Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G (2010) Global land water storage change from GRACE over 2002–2009; Inference on sea level. Comptes Rendus Geosci 342(3):179–188. doi:http://dx.doi.org/10.1016/j.crte.2009.12.004

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer. USA. Water Resour Res 46(11):W11517. doi:10.1029/2009WR008564

    Article  Google Scholar 

  • Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis. J Hydrometeorol 13:1397–1420. doi:10.1175/JHM-D-11-088.1

    Google Scholar 

  • Ogawa R, Chao BF, Heki K (2011) Acceleration signal in GRACE time-variable gravity in relation to inter-annual hydrological changes. Geophys J Int 184:673–679. doi:10.1111/j.1365-246X.2010.04843.x

    Article  Google Scholar 

  • Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Amsterdam, Elsevier, p 426. ISBN:0444430148

  • Rodell M, Chen J, Kato H, Famigietti J, Nigro J, Wilson C (2007) Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi:10.1007/s10040-006-0103-7

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Salstein DA, Ponte RM, Cady-Pereira K (2008) Uncertainties in atmospheric surface pressure fields from global analyses. J Geophys Res 113:D14107. doi:10.1029/2007JD009531

    Article  Google Scholar 

  • Schrama E, Wouters B, Vermeersen B (2011) Present day regional mass loss of Greenland observed with satellite gravimetry. Surv Geophys 32:377–385. doi:10.1007/s10712-011-9113-7

    Article  Google Scholar 

  • Shum CK, Jun-Yi G, Hossain F, Duan J, Alsdorf DE, Duan X-J, Kuo C-Y, Lee K, Schmidt M, Wang L (2011) Inter-annual Water Storage Changes in Asia from GRACE Data. In: Lal R et al (eds) Climate change and food security in South Asia. doi:10.1007/978-90-481-9516-9_6

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):ETG 3-1– 3-13. doi:10.1029/2001JB000576

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33. doi:10.1029/2005GL025285

  • Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004a) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192

    Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

  • Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756. doi:10.1126/science.1123785

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I, Zlotnicki V (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank R. Klees and P. Ditmar for their constructive comments. We further thank two anonymous reviewers for their helpful remarks which improved considerably the manuscript. E. Forootan and J. Kusche are grateful for the financial support provided by the German Research Foundation (DFG) under the project BAYES-G. We are grateful for the GRACE-AOD1B products that are provided by the German Research Centre for Geosciences GFZ, Potsdam, via the Information System and Data Centre (ISDC, http://isdc.gfz-potsdam.de/index.php). ITG3D-ERA-Interim was downloaded from the website of the Astronomical, Physical, and Mathematical Geodesy (APMG) group, Bonn University (http://www.igg.uni-bonn.de/apmg/index.php?id=itg3d_erainterim). We are also grateful to the ECMWF ERA-Interim data, downloaded from http://data-portal.ecmwf.int/data/d/interim_daily/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Forootan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forootan, E., Didova, O., Schumacher, M. et al. Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011. J Geod 88, 503–514 (2014). https://doi.org/10.1007/s00190-014-0696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0696-x

Keywords

Navigation