Advertisement

Is Gibrat’s “Economic Inequality” lognormal?

  • Sherzod B. AkhundjanovEmail author
  • Alexis Akira Toda
Article

Abstract

In the seminal book “Les Inégalités Économiques,” Gibrat (Les Inégalités Économiques, Librairie du Recueil Sirey, Paris, 2013) proposed the law of proportional effect and claimed that a variety of empirical size distributions—such as income, wealth, firm size, and city size—obey the lognormal distribution. Gibrat’s law went on to become a stylized result stimulating a voluminous subsequent research that has contributed to our understanding of stochastic growth processes and a statistical regularity of the size distribution. However, many of the motivating examples used by Gibrat in his original work were subject to various data issues, and Gibrat’s reasoning of lognormal fit was based solely on graphical analysis. In this paper, we revisit the original 24 data sets considered by Gibrat (Les Inégalités Économiques, Librairie du Recueil Sirey, Paris, 2013) and show that in the majority of cases, the Pareto-type distribution actually provides a better fit to the data than lognormal. We show that Gibrat’s erroneous conclusion is partly due to data binning, truncation, and failure to weight data points properly.

Keywords

Economic history Fat tails Law of proportional effect Lognormal distribution Pareto distribution 

JEL Classification

D31 L11 N01 R12 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akhundjanov SB, Devadoss S, Luckstead J (2017) Size distribution of national \(\text{ CO }_2\) emissions. Energy Econ 66:182–193Google Scholar
  2. Akhundjanov SB, Chamberlain L (2019) The power law distribution of agricultural land size. J Appl Stat, forthcomingGoogle Scholar
  3. Axtell RL (2001) Zipf distribution of U.S. firm sizes. Science 293(5536):1818–1820Google Scholar
  4. Beare BK, Toda AA (2017) Geometrically stopped Markovian random growth processes and Pareto tailsGoogle Scholar
  5. Benhabib J, Bisin A (2018) Skewed wealth distributions: theory and empirics. J Econ Lit 56(4):1261–1291Google Scholar
  6. DuMouchel WH (1983) Estimating the stable index \(\alpha \) in order to measure tail thickness: a critique. Ann Stat 11(4):1019–1031Google Scholar
  7. Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451Google Scholar
  8. Gabaix X (1999) Zipf’s law for cities: an explanation. Q. J. Econ. 114(3):739–767Google Scholar
  9. Gabaix X (2009) Power laws in economics and finance. Annu Rev Econ 1:255–293Google Scholar
  10. Gabaix X, Ioannides YM (2004) The evolution of city size distributions. In: Henderson JV, Thisse J-F (eds) Handbook of regional and urban economics, vol 4, chapter 53. Elsevier, Amsterdam, pp 2341–2378Google Scholar
  11. Gibrat R (1931) Les Inégalités Économiques. Librairie du Recueil Sirey, ParisGoogle Scholar
  12. Giesen K, Südekum J (2011) Zipf’s law for cities in the regions and the country. J Econ Geogr 11(4):667–686Google Scholar
  13. Giesen K, Zimmermann A, Suedekum J (2010) The size distribution across all cities–double Pareto lognormal strikes. J Urban Econ 68(2):129–137Google Scholar
  14. Hall P (1982) On some simple estimates of an exponent of regular variation. J R Stat Soc Ser B 44(1):37–42Google Scholar
  15. Ioannides YM, Overman HG (2003) Zipf’s law for cities: an empirical examination. Reg Sci Urban Econ 33(2):127–137Google Scholar
  16. Jansen DW, de Vries CG (1991) On the frequency of large stock returns: putting booms and busts into perspective. Rev Econ Stat 73(1):18–24Google Scholar
  17. Kalecki M (1945) On the Gibrat distribution. Econometrica 13(2):161–170Google Scholar
  18. Kapteyn JC (1903) Skew frequency curves in biology and statistics. P. Noordhoff, GroningenGoogle Scholar
  19. Kapteyn JC, Uven MJV (1916) Skew frequency curves in biology and statistics. Hoitsema Brothers, GroningenGoogle Scholar
  20. Klass OS, Biham O, Levy M, Malcai O, Solomon S (2006) The Forbes 400 and the Pareto wealth distribution. Econ Lett 90(2):290–295Google Scholar
  21. Leamer E, Levinsohn J (1995) International trade theory: the evidence. In: Grossman G, Rogoff K (eds) Handbook of International Economics, vol 3, chapter 26. North-Holland, pp 1339–1394Google Scholar
  22. Lindeberg JW (1922) Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15(1):211–225Google Scholar
  23. Luttmer EGJ (2007) Selection, growth, and the size distribution of firms. Q J Econ 122(3):1103–1144Google Scholar
  24. Mansfield E (1962) Entry, Gibrat’s law, innovation, and the growth of firms. Am Econ Rev 52(5):1023–1051Google Scholar
  25. McNeil AJ, Frey R (2000) Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. J Empir Finance 7(3–4):271–300Google Scholar
  26. Mitzenmacher M (2004) A brief history of generative models for power law and lognormal distributions. Int Math 1(2):226–252Google Scholar
  27. Pareto V (1897) Cours d’Économie Politique, vol 2. F. Rouge, LausanneGoogle Scholar
  28. Perline R (2005) Strong, weak and false inverse power laws. Stat Sci 20(1):68–88Google Scholar
  29. Reed WJ (2001) The Pareto, Zipf and other power laws. Econ Lett 74(1):15–19Google Scholar
  30. Reed WJ (2002) On the rank-size distribution for human settlements. J Reg Sci 42(1):1–17Google Scholar
  31. Reed WJ (2003) The Pareto law of incomes—an explanation and an extension. Physica A 319(1):469–486Google Scholar
  32. Reed WJ, Jorgensen M (2004) The double Pareto-lognormal distribution—a new parametric model for size distribution. Commun Stat Theory Methods 33(8):1733–1753Google Scholar
  33. Rozenfeld HD, Rybski D, Gabaix X, Makse HA (2011) The area and population of cities: new insights from a different perspective on cities. Am Econ Rev 101(5):2205–2225Google Scholar
  34. Rutherford RSG (1955) Income distributions: a new model. Econometrica 23(3):277–294Google Scholar
  35. Sutton J (1997) Gibrat’s legacy. J Econ Lit 35(1):40–59Google Scholar
  36. Toda AA (2011) Income dynamics with a stationary double Pareto distribution. Phys Rev E 83(4):046122Google Scholar
  37. Toda AA (2012) The double power law in income distribution: explanations and evidence. J Econ Behav Organ 84(1):364–381Google Scholar
  38. Toda AA (2014) Incomplete market dynamics and cross-sectional distributions. J Econ Theory 154:310–348Google Scholar
  39. Vermeulen P (2018) How fat is the top tail of the wealth distribution? Rev Income Wealth 64(2):357–387Google Scholar
  40. Virkar Y, Clauset A (2014) Power-law distributions in binned empirical data. Ann Appl Stat 8(1):89–119Google Scholar
  41. Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57(2):307–333Google Scholar
  42. Wold HOA, Whittle P (1957) A model explaining the Pareto distribution of wealth. Econometrica 25(4):591–595Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied EconomicsUtah State UniversityLoganUSA
  2. 2.Department of EconomicsUniversity of California San DiegoLa JollaUSA

Personalised recommendations