# Gauss-Hermite Quadrature Approximation for Estimation in Generalised Linear Mixed Models

Article

First Online:

- 3.4k Downloads
- 6 Citations

## Summary

This paper provides a unified algorithm to explicitly calculate the maximum likelihood estimates of parameters in a general setting of generalised linear mixed models (GLMMs) in terms of Gauss-Hermite quadrature approximation. The score function and observed information matrix are expressed explicitly as analytically closed forms so that Newton-Raphson algorithm can be applied straightforwardly. Compared with some existing methods, this approach can produce more accurate estimates of the fixed effects and variance components in GLMMs, and can serve as a basis of assessing existing approximations in GLMMs. A simulation study and practical example analysis are provided to illustrate this point.

## Keywords

Gauss-Hermite quadrature Generalised linear mixed models Maximum likelihood estimates Newton-Raphson algorithm Random effects## References

- Abramowitz, M. and Stegun, I. (1972).
*Handbook of Mathematical Functions*. New-York, Dover.zbMATHGoogle Scholar - Anderson D. A. and Aitkin M. (1985).
*Variance component models with binary response: interviewer variability*.*Journal of the Royal Statistical Society*,*Series B***47**, 203–210.MathSciNetGoogle Scholar - Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalised linear mixed models.
*Journal of the American Statistical Association*,**88**, 9–25.zbMATHGoogle Scholar - Crowder, M. J. (1978). Beta-Binomial ANOVA for proportions.
*Applied Statistics*,**27**, 34–37.CrossRefGoogle Scholar - Davis, P. J. and Rabinowitz, P. (1975).
*Methods of Numerical Integration*. New York: Dover.zbMATHGoogle Scholar - Fang, K. T. and Wang Y. (1994).
*Number-Theoretic Methods in Statistics*, Chapman and Hall, London.CrossRefGoogle Scholar - Fahrmeir, L. and Tutz, G. (1994).
*Multivariate Statistical Modelling Based on Generalised Linear Models*, Springer-Verlag, New York and Berlin.CrossRefGoogle Scholar - Gilmour, A. R., Thompson, R. and Cullis, B. R. (1995). Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models.
*Biometrics*,**51**, 1440–1450.CrossRefGoogle Scholar - Harville, D. A., (1977). Maximum likelihood approaches to variance component estimation and to related problems.
*Journal of the American Statistical Association*,**72**, 320–338.MathSciNetCrossRefGoogle Scholar - Heddeker, D. and Gibbons, R. D., (1994). A random effects ordinal regression model for multilevel analysis.
*Biometrics*, 50, 933–944.CrossRefGoogle Scholar - Heddeker, D. and Gibbons, R. D., (1996). A computer programme for mixed-effects ordinal probit and logistic regression analysis.
*Computer Methods and Programs in Biomedicine*,**49**, 157–176.CrossRefGoogle Scholar - Kuk, A. Y. C. (1995). Asymptotically unbiased estimation in generalised linear models with random effects.
*Journal of the Royal Statistical Society*,*Series B***57**, 395–407.zbMATHGoogle Scholar - Lee, Y. and Neider, J. A. (1996). Hierarchical generalised linear models (with discussions).
*Journal of the Royal Statistical Society*,*Series B*58, 619–678.Google Scholar - Lesaffre, E. and Spiessens B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example.
*Applied Statistics*, 50, 325–335.MathSciNetzbMATHGoogle Scholar - Lin, X. and Breslow, N. E. (1996). Bias correction in generalised linear mixed models with multiple components of dispersion.
*Journal of the American Statistical Association*,**91**, 1007–1016.MathSciNetCrossRefGoogle Scholar - Liu, Q. and Pierce, D. A. (1994). A note on Gauss-Hermite quadrature.
*Biometrika*,**81**, 624–629.MathSciNetzbMATHGoogle Scholar - McCullagh, P. and Neider, J. A. (1989).
*Generalised Linear Models*, 2nd edition. London: Chapman and Hall.CrossRefGoogle Scholar - McCulloch, C. E. (1997). Maximum likelihood algorithms for generalised linear mixed models.
*Journal of the American Statistical Association*,**92**, 162–170.MathSciNetCrossRefGoogle Scholar - McGilchrist, C. A. (1994). Estimation in generalised mixed models.
*Journal of the Royal Statistical Society*,*Series B***56**, 61–69.zbMATHGoogle Scholar - Naylor J. C. and Smith A. F. M. (1982). Applications of a method for the efficient computation of posterior distributions.
*Applied Statistics*,**31**, 214–225.MathSciNetCrossRefGoogle Scholar - Nel, D. G. (1980). On matrix differentiation in statistics.
*South African Statistical Journal*,**14**, 137–193.MathSciNetzbMATHGoogle Scholar - Pan, J. X., Fang, K. T. and von Rosen, D. (1997). Local influence assessment in the growth curve model with unstructured covariance.
*Journal of Statistical Planning and Inference*,**62**, 263–278.MathSciNetCrossRefGoogle Scholar - Raudenbush, S. W., Yang, M. L. and Yosef M. (2000). Maximum likelihood for generalised linear models with nested random effects via high-order multivariate Laplace approximation.
*Journal of Computational and Graphical Statistics*,**9**, 141–157.MathSciNetGoogle Scholar - SAS Institute (1999),
*The SAS System for Windows, Release V8.0*. Cary: SAS Institute.Google Scholar - Schall, R. (1991). Estimation in generalised linear models with random effects.
*Biometrika*,**78**, 719–727.CrossRefGoogle Scholar - Solomon, P. J. and Cox, D. R. (1992). Nonlinear Components of Variance Models.
*Biometrika*,**79**, 1–11.MathSciNetCrossRefGoogle Scholar - Steele, B. M. (1996). A modified EM algorithm for estimation in generalised mixed models.
*Biometrics*,**52**, 1295–1310.MathSciNetCrossRefGoogle Scholar - Stroud, A. H. and Secrest, D. (1966).
*Gaussian Quadrature Formulas*. New York: Prentice Hall.zbMATHGoogle Scholar - Thompson, R. (1990). Generalised linear models and applications to animal breeding.
*Advances in Statistical Methods for Genetic Improvement of Livestock*. (eds. D. Gianola and K. Hammond) Springer-Verlag, Berlin, 312–327.CrossRefGoogle Scholar - Zeger, S. L. and Karim, M. R. (1991). Generalised linear models with random effects: a Gibbs sampling approach.
*Journal of the American Statistical Association*,**86**, 79–86.MathSciNetCrossRefGoogle Scholar - Zeger, S. L. and Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes.
*Biometrics*,**42**, 121–130.CrossRefGoogle Scholar - Zeger, S. L., Liang, K. Y. and Albert, P. S. (1988). Models for longitudinal data: a generalised estimating equation approach.
*Biometrics*,**44**, 1049–1060.MathSciNetCrossRefGoogle Scholar

## Copyright information

© Physica-Verlag 2003