Computational Statistics

, Volume 15, Issue 3, pp 337–354 | Cite as

Posterior predictive checks: Principles and discussion

  • Johannes Berkhof
  • Iven van Mechelen
  • Herbert Hoijtink


In this paper, we give a description of posterior predictive checking (introduced by Rubin, 1984) for detecting departures between the data and the posited model and illustrate how the posterior predictive check can be used in practice. We further discuss interpretability, frequency properties, and prior sensitivity of the posterior predictive p-value.


Posterior Predictive Check Discrepancy Measure Posterior Predictive p-value Frequency Properties Prior Sensitivity 


  1. Berger, J.O., and Sellke, T. (1987). Testing a point null hypothesis: the irreconcilability of P values and evidence. Journal of the American Statistical Association, 82, 112–122.MathSciNetzbMATHGoogle Scholar
  2. Box, G. E. P. (1980). Sampling and Bayes inference in scientific modelling and robustness. Journal of the Royal Statistical Society, series A, 143, 383–430.MathSciNetCrossRefGoogle Scholar
  3. Carlin, B.P., and Louis, T.A. (1996). Bayes and Empirical Bayes Methods for Data Analysis. London: Chapman & Hall.zbMATHGoogle Scholar
  4. Chernoff, H. (1954). On the distribution of the likelihood ratio. Annals of Mathematical Statistics, 25, 573–578.MathSciNetCrossRefGoogle Scholar
  5. Edwards, W., Lindman, H., and Savage, L.J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193–242.CrossRefGoogle Scholar
  6. Gelfand, A.E., and Dey, D.K. (1994). Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society, series B, 56, 501–514.MathSciNetzbMATHGoogle Scholar
  7. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis. London: Chapman and Hall.CrossRefGoogle Scholar
  8. Gelman, A., Goegebeur, Y., Tuerlinckx, F., and Van Mechelen, I. (in press). Diagnostic checks for discrete-data regression models using posterior predictive simulations. Applied Statistics.Google Scholar
  9. Gelman, A., Meng, X.L. and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807.MathSciNetzbMATHGoogle Scholar
  10. Gilovich, T., Vallone, R. and Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17, 295–314.CrossRefGoogle Scholar
  11. Hoijtink, H. and Molenaar, I.W. (1997). A multidimensional item response model: constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171–190.CrossRefGoogle Scholar
  12. Hsiao, K. (1994). Bayesian tests of extra-binomial variability with emphasis on the boundary case. Ph.D. dissertation, Carnegie Mellon University, Department of Statistics.Google Scholar
  13. Kass, R.E. and Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical Association, 90, 773–795.MathSciNetCrossRefGoogle Scholar
  14. Lewis, S.M., and Raftery, A.E. (1996). Comment on ‘Posterior predictive assessment of model fitness via realized discrepancies’ by Gelman, A., Meng, X.L., and Stern, H.S. Statistica Sinica, 6, 779–786.Google Scholar
  15. Meng, X.L. (1994). Posterior predictive p-values. The Annals of Statistics, 22, 1142–1160.MathSciNetCrossRefGoogle Scholar
  16. Mood, A.M., Graybill, F.A., Boes, D.C. (1974). Introduction to the Theory of Statistics, 3rd edition. Singapore: McGraw-Hill.zbMATHGoogle Scholar
  17. Rubin, D. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics, 12, 1151–1172.MathSciNetCrossRefGoogle Scholar

Copyright information

© Physica-Verlag 2000

Authors and Affiliations

  • Johannes Berkhof
    • 1
  • Iven van Mechelen
    • 1
  • Herbert Hoijtink
    • 2
  1. 1.Department of PsychologyUniversity of LeuvenLeuvenBelgium
  2. 2.Department of Methodology and StatisticsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations