Advertisement

Computational Statistics

, Volume 34, Issue 1, pp 23–46 | Cite as

Estimating reducible stochastic differential equations by conversion to a least-squares problem

  • Oscar GarcíaEmail author
Original Paper

Abstract

Stochastic differential equations (SDEs) are increasingly used in longitudinal data analysis, compartmental models, growth modelling, and other applications in a number of disciplines. Parameter estimation, however, currently requires specialized software packages that can be difficult to use and understand. This work develops and demonstrates an approach for estimating reducible SDEs using standard nonlinear least squares or mixed-effects software. Reducible SDEs are obtained through a change of variables in linear SDEs, and are sufficiently flexible for modelling many situations. The approach is based on extending a known technique that converts maximum likelihood estimation for a Gaussian model with a nonlinear transformation of the dependent variable into an equivalent least-squares problem. A similar idea can be used for Bayesian maximum a posteriori estimation. It is shown how to obtain parameter estimates for reducible SDEs containing both process and observation noise, including hierarchical models with either fixed or random group parameters. Code and examples in R are given. Univariate SDEs are discussed in detail, with extensions to the multivariate case outlined more briefly. The use of well tested and familiar standard software should make SDE modelling more transparent and accessible.

Keywords

Stochastic processes Longitudinal data Growth curves Compartmental models Mixed-effects R 

Notes

Acknowledgements

I am grateful to the anonymous reviewers and to Dr. Lance Broad for thoughtful and detailed comments that contributed to improve the text.

Supplementary material

180_2018_837_MOESM1_ESM.pdf (175 kb)
Supplementary material 1 (pdf 174 KB)

References

  1. Allen E (2007) Modeling with Itô stochastic differential equations. Springer, Dordrecht, p 228zbMATHGoogle Scholar
  2. Arnold L (1974) Stochastic differential equations: theory and applications. Wiley, New YorkzbMATHGoogle Scholar
  3. Artzrouni M, Reneke J (1990) Stochastic differential equations in mathematical demography: a review. Appl Math Comput 39(3):139–153.  https://doi.org/10.1016/0096-3003(90)90078-h MathSciNetzbMATHGoogle Scholar
  4. Batho A, García O (2014) A site index model for lodgepole pine in British Columbia. For Sci 60(5):982–987.  https://doi.org/10.5849/forsci.13-509 Google Scholar
  5. Bishwal JP (2008) Parameter estimation in stochastic differential equations. Springer, Berlin.  https://doi.org/10.1007/978-3-540-74448-1 zbMATHGoogle Scholar
  6. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26(2):211–252.  https://doi.org/10.21236/ada110447 zbMATHGoogle Scholar
  7. Broad L, Lynch T (2006) Growth models for Sitka spruce in Ireland. Ir For 63(1 & 2):53–79Google Scholar
  8. Brouste A, Fukasawa M, Hino H, Iacus S, Kamatani K, Koike Y, Masuda H, Nomura R, Ogihara T, Shimuzu Y, Uchida M, Yoshida N (2014) The yuima project: a computational framework for simulation and inference of stochastic differential equations. J Stat Softw 57(1):1–51.  https://doi.org/10.18637/jss.v057.i04 Google Scholar
  9. Bu R, Giet L, Hadri K, Lubrano M (2010) Modeling multivariate interest rates using time-varying copulas and reducible nonlinear stochastic differential equations. J Financ Econ 9(1):198–236.  https://doi.org/10.1093/jjfinec/nbq022 Google Scholar
  10. Bu R, Cheng J, Hadri K (2016) Reducible diffusions with time-varying transformations with application to short-term interest rates. Econ Model 52(Part A):266–277.  https://doi.org/10.1016/j.econmod.2014.10.039 Google Scholar
  11. Cleur EM (2000) Maximum likelihood estimates of a class of one dimensional stochastic differential equation models from discrete data. J Time Ser Anal 22(5):505–515.  https://doi.org/10.1111/1467-9892.00238 MathSciNetzbMATHGoogle Scholar
  12. CRAN (2017) The comprehensive R archive network. https://cran.r-project.org/. Accessed 2017-07-24
  13. Cuenod CA, Favetto B, Genon-Catalot V, Rozenholc Y, Samson A (2011) Parameter estimation and change-point detection from dynamic contrast enhanced MRI data using stochastic differential equations. Math Biosci 233(1):68–76.  https://doi.org/10.1016/j.mbs.2011.06.006 MathSciNetzbMATHGoogle Scholar
  14. Davidian M, Giltinan DM (2003) Nonlinear models for repeated measurement data: an overview and update. J Agric Biol Environ Stat 8(4):387–419.  https://doi.org/10.1198/1085711032697 Google Scholar
  15. Donnet S, Samson A (2008) Parametric inference for mixed models defined by stochastic differential equations. ESAIM Probab Stat 12:196–218.  https://doi.org/10.1051/ps:2007045 MathSciNetzbMATHGoogle Scholar
  16. Donnet S, Samson A (2013) A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Adv Drug Deliv Rev 65(7):929–939.  https://doi.org/10.1016/j.addr.2013.03.005 Google Scholar
  17. Donnet S, Foulley JL, Samson A (2010) Bayesian analysis of growth curves using mixed models defined by stochastic differential equations. Biometrics 66(3):733–741.  https://doi.org/10.1111/j.1541-0420.2009.01342.x MathSciNetzbMATHGoogle Scholar
  18. Driver CC, Oud JHL, Voelkle MC (2017) Continuous time structural equation modeling with R package ctsem. J Stat Softw 77(5):1–35.  https://doi.org/10.18637/jss.v077.i05 Google Scholar
  19. Favetto B, Samson A (2010) Parameter estimation for a bidimensional partially observed Ornstein–Uhlenbeck process with biological application. Scand J Stat 37:200–220.  https://doi.org/10.1111/j.1467-9469.2009.00679.x MathSciNetzbMATHGoogle Scholar
  20. Filipe PA, Braumann CA, Brites NM, Roquete CJ (2010) Modelling animal growth in random environments: an application using nonparametric estimation. Biom J 52(5):653–666.  https://doi.org/10.1002/bimj.200900273 MathSciNetzbMATHGoogle Scholar
  21. Furnival GM (1961) An index for comparing equations used in constructing volume tables. For Sci 7(4):337–341Google Scholar
  22. García O (1983) A stochastic differential equation model for the height growth of forest stands. Biometrics 39(4):1059–1072.  https://doi.org/10.2307/2531339 zbMATHGoogle Scholar
  23. García O (1984) New class of growth models for even-aged stands: Pinus radiata in Golden Downs forest. N Z J For Sci 14:65–88Google Scholar
  24. García O (2008) Visualization of a general family of growth functions and probability distributions—the growth-curve explorer. Environ Model Softw 23(12):1474–1475.  https://doi.org/10.1016/j.envsoft.2008.04.005 Google Scholar
  25. Gardiner CW (1985) Handbook of stochastic methods for physics, chemistry and the natural sciences, 4th edn. Springer, BerlinGoogle Scholar
  26. Griewank A, Toint PL (1982) Partitioned variable metric updates for large structured optimization problems. Numer. Math. 39:119–137.  https://doi.org/10.1007/bf01399316 MathSciNetzbMATHGoogle Scholar
  27. Henderson D, Plaschko P (2006) Stochastic differential equations in science and engineering. World Scientific, Singapore.  https://doi.org/10.1142/9789812774798 zbMATHGoogle Scholar
  28. Hotelling H (1927) Differential equations subject to error, and population estimates. J Am Stat Assoc 22:283–314.  https://doi.org/10.1080/01621459.1927.10502963 zbMATHGoogle Scholar
  29. King A, Nguyen D, Ionides E (2016) Statistical inference for partially observed Markov processes via the R package pomp. J Stat Softw 69(1):1–43.  https://doi.org/10.18637/jss.v069.i12 Google Scholar
  30. Klim S, Mortensen SB, Kristensen NR, Overgaard RV, Madsen H (2009) Population stochastic modelling (PSM)—an R package for mixed-effects models based on stochastic differential equations. Comput Methods Programs Biomed 94(3):279–289.  https://doi.org/10.1016/j.cmpb.2009.02.001 Google Scholar
  31. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, BerlinzbMATHGoogle Scholar
  32. Kristensen NR, Madsen H, Ingwersen SH (2005) Using stochastic differential equations for PK/PD model development. J Pharmacokinet Pharmacodyn 32(1):109–141.  https://doi.org/10.1007/s10928-005-2105-9 Google Scholar
  33. Kunita H (2010) Itôs stochastic calculus: its surprising power for applications. Stoch Process Appl 120(5):622–652.  https://doi.org/10.1016/j.spa.2010.01.013 MathSciNetzbMATHGoogle Scholar
  34. Lv Q, Pitchford JW (2007) Stochastic von Bertalanffy models, with applications to fish recruitment. J Theor Biol 244(4):640–655.  https://doi.org/10.1016/j.jtbi.2006.09.009 MathSciNetGoogle Scholar
  35. Martinez AS, González RS, Terçariol CAS (2008) Continuous growth models in terms of generalized logarithm and exponential functions. Physica A 387(23):5679–5687.  https://doi.org/10.1016/j.physa.2008.06.015 MathSciNetGoogle Scholar
  36. Moler C, Van Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev 45(1):3–49.  https://doi.org/10.1137/S00361445024180 MathSciNetzbMATHGoogle Scholar
  37. Moller J, Madsen H (2010) From state dependent diffusion to constant diffusion in stochastic differential equations by the Lamperti transform. IMM-technical report-2010-16, Technical University of Denmark, DTU Informatics, Lyngby, Denmark. http://orbit.dtu.dk/files/5175845/tr10_16.pdf
  38. Nielsen JN, Madsen H, Young PC (2000) Parameter estimation in stochastic differential equations: an overview. Annu Rev Control 24:83–94.  https://doi.org/10.1016/S1367-5788(00)90017-8 Google Scholar
  39. Øksendal B (2003) Stochastic differential equations, 6th edn. Springer, Berlin.  https://doi.org/10.1007/978-3-642-14394-6_5 zbMATHGoogle Scholar
  40. Paige R, Allen E (2010) Closed-form likelihoods for stochastic differential equation growth models. Can J Stat-revue Canadienne De Statistique 38(3):474–487.  https://doi.org/10.1002/cjs.10071 MathSciNetzbMATHGoogle Scholar
  41. Picchini U, Ditlevsen S (2011) Practical estimation of high dimensional stochastic differential mixed-effects models. Comput Stat Data Anal 55(3):1426–1444.  https://doi.org/10.1016/j.csda.2010.003 MathSciNetzbMATHGoogle Scholar
  42. Picchini U, de Gaetano A, Ditlevsen S (2010) Stochastic differential mixed-effects models. Scand J Stat 37(1):67–90.  https://doi.org/10.1111/j.1467-9469.2009.00665.x MathSciNetzbMATHGoogle Scholar
  43. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, New York.  https://doi.org/10.1007/b98882 zbMATHGoogle Scholar
  44. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0. http://www.R-project.org
  45. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10(29):290–300.  https://doi.org/10.1093/jxb/10.2.290 Google Scholar
  46. Seber GAF, Wild CJ (2003) Nonlinear regression. Wiley, New York, p 768.  https://doi.org/10.1002/0471725315 zbMATHGoogle Scholar
  47. Sen P (1989) A stochastic model for coupled enzyme system. Biom J 31(8):973–992.  https://doi.org/10.1002/bimj.4710310814 zbMATHGoogle Scholar
  48. Simoncini V (2016) Computational methods for linear matrix equations. SIAM Rev 58(3):377–441.  https://doi.org/10.1137/130912839 MathSciNetzbMATHGoogle Scholar
  49. Snijders TAB (2003) Multilevel analysis. In: Lewis-Beck M, Bryman A, Liao T (eds) The SAGE encyclopedia of social science research methods, vol 2. Sage, Thousand Oaks, pp 673–677Google Scholar
  50. Soo YW, Bates DM (1992) Loosely coupled nonlinear least squares. Comput Stat Data Anal 14(2):249–259.  https://doi.org/10.1016/0167-9473(92)90177-h zbMATHGoogle Scholar
  51. Strathe AB, Sorensen H, Danfaer A (2009) A new mathematical model for combining growth and energy intake in animals: the case of the growing pig. J Theor Biol 261(2):165–175.  https://doi.org/10.1016/j.jtbi.2009.07.039 zbMATHGoogle Scholar
  52. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York.  https://doi.org/10.1007/978-0-387-21706-2 zbMATHGoogle Scholar
  53. von Bertalanffy L (1949) Problems of organic growth. Nature 163:156–158.  https://doi.org/10.1038/163156a0 Google Scholar
  54. Whitaker GA, Golightly A, Boys RJ, Sherlock C (2017) Bayesian inference for diffusion-driven mixed-effects models. Bayesian Anal 12(2):435–463.  https://doi.org/10.1214/16-BA1009 MathSciNetzbMATHGoogle Scholar
  55. Wilks SS (1962) Mathematical statistics, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  56. Zacks S (1971) The theory of statistical inference. Wiley, New York, p 609Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DasometricsConcónChile

Personalised recommendations