Quantile regression for linear models with autoregressive errors using EM algorithm

  • Yuzhu Tian
  • Manlai Tang
  • Yanchao Zang
  • Maozai Tian
Original Paper
  • 36 Downloads

Abstract

In this paper, we consider the quantile linear regression models with autoregressive errors. By incorporating the expectation–maximization algorithm into the considered model, the iterative weighted least square estimators for quantile regression parameters and autoregressive parameters are derived. Finally, the proposed procedure is illustrated by simulations and a real data example.

Keywords

Maximum likelihood estimation (MLE) Hierarchical model QR analysis Autoregressive model 

Notes

Acknowledgements

The authors thank editors and two reviewers for their constructive comments and valuable suggestions which have greatly improved the paper. The work is partly supported by Young academic leaders project of Henan University of Science and Technology (No. 13490008), National Natural Science Foundation of China (No. 11501167) and China Postdoctoral Science Foundation (No. 2017M610156).

References

  1. Alhamzawi R, Yu K, Benoit DF (2012) Bayesian adaptive Lasso quantile regression. Stat Model 12:279–297MathSciNetCrossRefMATHGoogle Scholar
  2. Chatterjee S, Hadi AS (1988) Statistical analysis in linear regression. Wiley, New YorkMATHGoogle Scholar
  3. Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing auto-correlated error terms. J Am Stat Assoc 44(245):32–61MATHGoogle Scholar
  4. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New YorkCrossRefMATHGoogle Scholar
  5. Fallahpour S, Ahmed SE (2014) Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors. Stat Probab Lett 92(5):199–208MathSciNetCrossRefMATHGoogle Scholar
  6. Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the Asymmetric Laplace distribution. Biostatistics 8:140–154CrossRefMATHGoogle Scholar
  7. Graybill FA (1961) An introduction to linear statistical models. McGraw-Hill, New YorkMATHGoogle Scholar
  8. Jiang Y, Li H (2014) Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors. J Korean Stat Soc 43(4):531–543MathSciNetCrossRefMATHGoogle Scholar
  9. Koenker R (2005) Quantile regression. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  10. Koenker R, Bassett J (1978) Regression quantiles. Econometrica 46(1):33–50MathSciNetCrossRefMATHGoogle Scholar
  11. Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578MathSciNetCrossRefMATHGoogle Scholar
  12. Kobayashi G, Kozumi H (2013) Bayesian analysis of quantile regression for censored dynamic panel data. Comput Stat 27:359–380MathSciNetCrossRefMATHGoogle Scholar
  13. Lee J, Lund R (2004) Revisiting simple linear regression with autocorrelated errors. Biometrika 91:240–245MathSciNetCrossRefMATHGoogle Scholar
  14. Li G, Li Y, Tsai CL (2015) Quantile correlations and quantile autoregressive modeling. J Am Stat Assoc 110:246–261MathSciNetCrossRefMATHGoogle Scholar
  15. Lim Y, Oh H (2014) Variable selection in quantile regression when the models have autoregressive errors. J Korean Stat Soc 43(4):513–530MathSciNetCrossRefMATHGoogle Scholar
  16. Lin T, Pourahmadi M, Schick A (1999) Regression models with time series errors. J Time Ser Anal 20:425–433MathSciNetCrossRefMATHGoogle Scholar
  17. Liu Y, Bottai M (2009) Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostatistics 5(1):1–28MathSciNetGoogle Scholar
  18. McKnight SD, McKean JW, Huitema BE (2000) A double bootstrap method to analyze linear models with autoregressive error terms. Psychol Methods 5(1):87–101CrossRefGoogle Scholar
  19. McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton University Press, PrincetonMATHGoogle Scholar
  20. Oakes D (1999) Direct calculation of the information matrix via the EM algorithm. J R Stat Soc Ser B 61(1):479–482MathSciNetCrossRefMATHGoogle Scholar
  21. Ramanathan R (1998) Introductory econometrics with applications. Harcourt Brace Jovanovich, OrlandoGoogle Scholar
  22. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New YorkCrossRefMATHGoogle Scholar
  23. Rao CR, Toutenburg H, Shalabh, Heumann C (2008) Linear models and generalizations: least squares and alternatives, 3rd edn. Springer, New YorkMATHGoogle Scholar
  24. Reed C, Yu K (2009) Efficient Gibbs sampling for Bayesian quantile regression. Technical report, Brunel University, UKGoogle Scholar
  25. Reich BJ, Fuentes M, Dunson DB (2011) Bayesian spatial quantile regression. J Am Stat Assoc 106:6–20MathSciNetCrossRefMATHGoogle Scholar
  26. Rosadi D, Filzmoser P (2016) Robust second-order least-squares estimation for regression models with autoregressive errors. Stat Pap.  https://doi.org/10.1007/s00362-016-0829-9 Google Scholar
  27. Rosadi D, Peiris S (2015) Second-order least-squares estimation for regression models with autocorrelated errors. Comput Stat 29(5):931–943CrossRefMATHGoogle Scholar
  28. Tian YZ, Tian MZ, Zhu QQ (2014) Linear quantile regression based on EM algorithm. Commun Stat Theory Methods 43(16):3464–3484MathSciNetCrossRefMATHGoogle Scholar
  29. Tian YZ, Li EQ, Tian MZ (2016) Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates. Comput Stat 31(3):1031–1057MathSciNetCrossRefMATHGoogle Scholar
  30. Wu R, Wang Q (2012) Shrinkage estimation for linear regression with ARMA errors. J Stat Plan Inference 142(7):2136–2148MathSciNetCrossRefMATHGoogle Scholar
  31. Yang CY (2012) Estimation of linear regression models with serially correlated errors. J Data Sci 10(4):723–755MathSciNetGoogle Scholar
  32. Yoon Y-J, Park C, Lee T (2013) Penalized regression models with autoregressive error terms. J Stat Comput Simul 83(9):1756–1772MathSciNetCrossRefGoogle Scholar
  33. Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447MathSciNetCrossRefMATHGoogle Scholar
  34. Zhao KF, Lian H (2015) Bayesian Tobit quantile regression with single-index models. J Stat Comput Simul 85(6):1247–1263MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuzhu Tian
    • 1
    • 2
  • Manlai Tang
    • 3
  • Yanchao Zang
    • 1
  • Maozai Tian
    • 4
  1. 1.School of Mathematics and StatisticsHenan University of Science and TechnologyLuoYangChina
  2. 2.School of Statistics and MathematicsThe Central University of Finance and EconomicsBeijingChina
  3. 3.Department of Mathematics and StatisticsHang Seng Management CollegeHong KongChina
  4. 4.School of StatisticsRenmin University of ChinaBeijingChina

Personalised recommendations