Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The effects of elliptical ultrasonic vibration in surface machining of CFRP composites using rotary ultrasonic machining

  • 19 Accesses

Abstract

Compared with conventional surface grinding (CSG) process, surface machining of carbon fiber-reinforced plastic (CFRP) composites using rotary ultrasonic machining (RUM) with vertical ultrasonic vibration generates smaller cutting forces because of improved machining performance and more damages to the machined CFRP surface due to the intermittent knocking induced by vertical ultrasonic vibration. It is reported that surface quality can be improved when the ultrasonic vibration is parallel to the feeding direction. In addition, elliptical ultrasonic vibration can be formed by the combination of horizontal and vertical ultrasonic vibrations. However, the effects of elliptical ultrasonic vibration in RUM surface machining of CFRPs are still unknown. This paper will study the influences of elliptical ultrasonic vibration on the machining performance and machined surface quality in RUM surface machining of CFRPs. The comparisons of output variables (including cutting forces, surface roughness, and machined surface topography) between RUM surface machining with elliptical ultrasonic vibration and the CSG process as well as RUM surface machining with vertical ultrasonic vibration will be conducted under different levels of input variables (including depth of cut, feedrate, and tool rotation speed). The abrasive-grain trajectory and the tool-workpiece contacting modes in these three machining processes are analyzed. It is found that RUM surface machining with elliptical ultrasonic vibration produced smallest feeding-direction cutting force, smallest vertical-direction cutting force, best morphology of machined surface, and smallest surface roughness among these three kinds of machining processes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Wang J, Zhang J, Feng P, Guo P (2018) Experimental and theoretical investigation on critical cutting force in rotary ultrasonic drilling of brittle materials and composites. Int J Mech Sci 135:555–564. https://doi.org/10.1016/j.ijmecsci.2017.11.042

  2. 2.

    Wang, J., Feng, P., Zhang, J., & Guo, P. (2018). Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration. Manufacturing letters 18: 1-5. https://doi.org/10.1016/j.mfglet.2018.08.002

  3. 3.

    Lv, D., Wang, H., Zhang, W., & Yin, Z. (2016). Subsurface damage depth and distribution in rotary ultrasonic machining and conventional grinding of glass BK7. Int J Adv Manuf Technol 86(9–12):2361–2371. https://doi.org/10.1007/s00170-016-8376-z

  4. 4.

    Lv, D. (2016). Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7. Int J Adv Manuf Technol 84(5-8): 1443–1455. https://doi.org/10.1177/0731684415597483

  5. 5.

    Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48(1–4):771–777. https://doi.org/10.1016/0924-0136(94)01720-L

  6. 6.

    Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. Journal of engineering for industry 117(2): 142–151. https://doi.org/10.1115/1.2803288

  7. 7.

    Geng D, Teng Y, Liu Y, Shao Z, Jiang X, Zhang D (2019) Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes. J Mater Process Technol 270:195–205. https://doi.org/10.1016/j.jmatprotec.2019.03.001

  8. 8.

    Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force. Ultrasonics 54(2):663–675. https://doi.org/10.1016/j.ultras.2013.09.005

  9. 9.

    Shao Z, Jiang X, Li Z, Geng D, Li S, Zhang D (2019) Feasibility study on ultrasonic-assisted drilling of CFRP/Ti stacks by single-shot under dry condition. Int J Adv Manuf Technol 105(1–4):1259–1273. https://doi.org/10.1007/s00170-019-04329-2

  10. 10.

    Cong WL, Pei ZJ, Deines TW, Liu DF, Treadwell C (2013) Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate. Compos Part B 52:303–310. https://doi.org/10.1016/j.compositesb.2013.04.022

  11. 11.

    Wang Y, Lin B, Ding YY, Fu ZQ, Zhang XF, Dong YH (2018) Effect of ultrasonic vibration assisted grinding process on surface topography and properties of C/SiC composite. Key Eng Mater 764:210–218. https://doi.org/10.4028/www.scientific.net/kem.764.210

  12. 12.

    Wang JJ, Zhang CL, Feng PF, Zhang JF (2016) A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int J Adv Manuf Technol 83(1–4):347–355. https://doi.org/10.1007/s00170-015-7567-3

  13. 13.

    Wang Y, Lin B, Wang S, Cao X (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf 77:66–73. https://doi.org/10.1016/j.ijmachtools.2013.11.003

  14. 14.

    Pei ZJ, Ferreira PM (1999) An experimental investigation of rotary ultrasonic face milling. Int J Mach Tools Manuf 39(8):1327–1344. https://doi.org/10.1016/S0890-6955(98)00093-5

  15. 15.

    Zhang C, Zhang J, Feng P (2013) Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. Int J Adv Manuf Technol 69(1–4):161–170. https://doi.org/10.1007/s00170-013-5004-z

  16. 16.

    Xiao X, Zheng K, Liao W (2014) Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics. Int J Adv Manuf Technol 75(9–12):1263–1277. https://doi.org/10.1007/s00170-014-6216-6

  17. 17.

    Yang Z, Zhu L, Lin B, Zhang G, Ni C, Sui T (2019) The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceram Int 45(7):8873–8889. https://doi.org/10.1016/j.ceramint.2019.01.216

  18. 18.

    Liang Z, Wu Y, Wang X, Zhao W (2010) A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining. Int J Mach Tools Manuf 50(8):728–736. https://doi.org/10.1016/j.ijmachtools.2010.04.005

  19. 19.

    Wang H, Cong WL, Ning FD, Hu YB (2018) A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 95(9–12):3651–3663. https://doi.org/10.1007/s00170-017-1468-6

  20. 20.

    Geng D, Zhang D, Xu Y, Jiang X, Lu Z, Lu D (2015) Effect of speed ratio in edge routing of carbon fiber-reinforced plastics by rotary ultrasonic elliptical machining. J Reinf Plast Compos 34(21): 1779–1790. https://doi.org/10.1177/0731684415597483

  21. 21.

    Wang H, Ning FD, Hu YB, Cong WL (2018) Surface grinding of CFRP composites using rotary ultrasonic machining: a comparison of workpiece machining orientations. Int J Adv Manuf Technol 95(5–8):2917–2930. https://doi.org/10.1007/s00170-017-1401-z

  22. 22.

    Wang H, Ning F, Hu Y, Fernando PKSC, Pei ZJ, Cong W (2016) Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables. Advances in Mechanical Engineering 8(9):1687814016670284. https://doi.org/10.1177/1687814016670284

  23. 23.

    Liu S, Chen T, Wu C (2017) Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model. Int J Adv Manuf Technol 89(1–4):847–856. https://doi.org/10.1007/s00170-016-9151-x

  24. 24.

    Ning FD, Cong WL, Wang H, Hu YB, Hu ZL, Pei ZJ (2017) Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int J Adv Manuf Technol 92(1–4):1217–1229. https://doi.org/10.1007/s00170-017-0149-9

  25. 25.

    Wang H, Ning FD, Hu YB, Du DP, Cong WL (2017) Surface grinding of CFRP composites using rotary ultrasonic machining: design of experiment on cutting force, torque, and surface roughness. Int J Manuf Res 12(4):461–479. https://doi.org/10.1504/IJMR.2017.10008389

  26. 26.

    Wang H, Ning F, Li Y, Hu Y, Cong W (2019) Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP. Ultrasonics 97:19–28. https://doi.org/10.1016/j.ultras.2019.04.004

  27. 27.

    Ning F, Wang H, Cong W (2019) Rotary ultrasonic machining of carbon fiber reinforced plastic composites: a study on fiber material removal mechanism through single-grain scratching. Int J Adv Manuf Technol 103:1095–1104. https://doi.org/10.1007/s00170-019-03433-7

  28. 28.

    Wang H, Hu YB, Cong WL, Burks AR (2019) Rotary ultrasonic surface machining of CFRP composites: effects of horizontal ultrasonic vibration. Procedia Manufacturing 34:399–407. https://doi.org/10.1016/j.promfg.2019.06.184

  29. 29.

    Forsat M (2019) Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method. Acta Mech:1–14. https://doi.org/10.1007/s00707-019-02533-5

  30. 30.

    Mirjavadi SS, Forsat M, Nikookar M, Barati MR, Hamouda AMS (2019) Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets. The European Physical Journal Plus 134(10):508–515. https://doi.org/10.1140/epjp/i2019-12806-8

  31. 31.

    Shafiei N, Mirjavadi SS, MohaselAfshari B, Rabby S, Kazemi M (2017) Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput Methods Appl Mech Eng 322:615–632. https://doi.org/10.1016/j.cma.2017.05.007

  32. 32.

    Mirjavadi SS, Afshari BM, Khezel M, Shafiei N, Rabby S, Kordnejad M (2018) Nonlinear vibration and buckling of functionally graded porous nanoscaled beams. J Braz Soc Mech Sci Eng 40(7):352–312. https://doi.org/10.1007/s40430-018-1272-8

  33. 33.

    Mirjavadi SS, Mohasel Afshari B, Shafiei N, Rabby S, Kazemi M (2018) Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J Vib Control 24(18):4211–4225. https://doi.org/10.1177/1077546317721871

  34. 34.

    Mirjavadi SS, Rabby S, Shafiei N, Afshari BM, Kazemi M (2017) On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment. Applied Physics A 123(5):315–310. https://doi.org/10.1007/s00339-017-0918-1

  35. 35.

    Mirjavadi SS, Afshari BM, Shafiei N, Hamouda AMS, Kazemi M (2017) Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams. Steel Compos Struct 25(4):415–426.. https://doi.org/10.12989/scs.2017.25.4.415

  36. 36.

    Shafiei N, Mirjavadi SS, Afshari BM, Rabby S, Hamouda AMS (2017) Nonlinear thermal buckling of axially functionally graded micro and nanobeams. Compos Struct 168:428–439. https://doi.org/10.1016/j.compstruct.2017.02.048

  37. 37.

    Zhu WL, He Y, Ehmann KF, Sánchez Egea AJ, Wang X, Ju BF, Zhu Z (2016) Theoretical and experimental investigation on inclined ultrasonic elliptical vibration cutting of alumina ceramics. J Manuf Sci Eng 138(12). https://doi.org/10.1115/1.4033605

  38. 38.

    Zhu WL, Xing Y, Ehmann KF, Ju BF (2016) Ultrasonic elliptical vibration texturing of the rake face of carbide cutting tools for adhesion reduction. Int J Adv Manuf Technol 85(9–12):2669–2679. https://doi.org/10.1007/s00170-015-8084-0

  39. 39.

    Zhu WL, He Y, Ehmann KF, Zhu Z, Ju BF (2017) Modeling of the effects of phase shift on cutting performance in elliptical vibration cutting. Int J Adv Manuf Technol 92(9–12):3103–3115. https://doi.org/10.1007/s00170-017-0366-2

  40. 40.

    Geng D, Lu Z, Yao G, Liu J, Li Z, Zhang D (2017) Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP. Int J Mach Tools Manuf 123:160–170. https://doi.org/10.1016/j.ijmachtools.2017.08.008

  41. 41.

    Geng D, Zhang D, Li Z, Liu D (2017) Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics 75:80–90. https://doi.org/10.1016/j.ultras.2016.11.011

  42. 42.

    Geng D, Liu Y, Shao Z, Zhang M, Jiang X, Zhang D (2020) Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP. Compos Part B 183:107698. https://doi.org/10.1016/j.compositesb.2019.107698

  43. 43.

    Wang H, Hu YB, Cong WL, Hu ZL (2019) A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration. Int J Mech Sci 155:450–460. https://doi.org/10.1016/j.ijmecsci.2019.03.009

  44. 44.

    Timoshenko SP, Goodier JN, Abramson HN (1970) Theory of elasticity. J Appl Mech 37:888. https://doi.org/10.1115/1.3408648

  45. 45.

    Wang H, Hu Y, Ning FD, Li YZ, Zhang M, Cong WL, Smallwood S (2017, June) Surface grinding of CFRP composites using rotary ultrasonic machining: effects of ultrasonic power. In ASME 2017 6th International Conference on Materials and Processing (pp. V001T02A045-V001T02A045). American Society of Mechanical Engineers. https://doi.org/10.1115/MSEC2017-2726

  46. 46.

    Ramulu M, Wern CW, Garbini JL (1993) Effect of fibre direction on surface roughness measurements of machined graphite/epoxy composite. Compos Manuf 4(1):39–51. https://doi.org/10.1016/0956-7143(93)90015-Z

  47. 47.

    Wang H, Hu YB, Cong WL, Burks AR (2019) Rotary ultrasonic machining of carbon fiber–reinforced plastic composites: effects of ultrasonic frequency. Int J Adv Manuf Technol 104(9-12): 3759-3772. https://doi.org/10.1007/s00170-019-04084-4

  48. 48.

    Wang JJ, Feng PF, Zhang JF, Zhang CL, Pei ZJ (2016) Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials. Int J Mach Tools Manuf 101:18–27. https://doi.org/10.1016/j.ijmachtools.2015.10.005

  49. 49.

    Wang JJ, Zha HT, Feng PF, Zhang JF (2016) On the mechanism of edge chipping reduction in rotary ultrasonic drilling: a novel experimental method. Precis Eng, 44:231–235. https://doi.org/10.1016/j.precisioneng.2015.12.00

  50. 50.

    Geng D, Liu Y, Shao Z, Lu Z, Cai J, Li X, Jiang X, Zhang D (2019) Delamination formation, evaluation and suppression during drilling of composite laminates: a review. Compos Struct 216:168–186. https://doi.org/10.1016/j.compstruct.2019.02.099

  51. 51.

    Wang H, Ning FD, Hu YB, Li YC, Wang XL, Cong WL (2018) Edge trimming of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: effects of tool orientations. Int J Adv Manuf Technol 98(5–8):1641–1653. https://doi.org/10.1007/s00170-018-2355-5

  52. 52.

    Wang Y, Guangheng D, Zhao J, Dong Y, Zhang X, Jiang X, Lin B (2019) Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials. J Manuf Process 38:549–555. https://doi.org/10.1016/j.jmapro.2019.01.046

Download references

Funding

The U.S. National Science Foundation provided support (Grant No. CMMI-1538381).

Author information

Correspondence to Weilong Cong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, D., Li, Y. et al. The effects of elliptical ultrasonic vibration in surface machining of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol (2020). https://doi.org/10.1007/s00170-020-04976-w

Download citation

Keywords

  • Surface machining
  • CFRP composite
  • Rotary ultrasonic machining
  • Elliptical ultrasonic vibration
  • Cutting force
  • Surface quality