Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF

  • M. Damous Zandi
  • Ramon Jerez-MesaEmail author
  • Jordi Lluma-Fuentes
  • Joan J. Roa
  • J. Antonio Travieso-Rodriguez


This paper aims to determine the flexural stiffness and strength of a composite made of a polylactic acid reinforced with wood particles, named commercially as Timberfill, manufactured through fused filament fabrication (FFF). The influence of four factors (layer height, nozzle diameter, fill density, and printing velocity) is studied through an L27Taguchi orthogonal array. The response variables used as output results for an analysis of variance are obtained from a set of four-point bending tests. Results show that the layer height is the most influential parameter on flexural strength, followed by nozzle diameter and infill density, whereas the printing velocity has no significant influence. Ultimately, an optimal parameter set that maximizes the material’s flexural strength is found by combining a 0.2-mm layer height, 0.7-mm nozzle diameter, 75% fill density, and 35-mm/s velocity. The highest flexural resistance achieved experimentally is 47.26 MPa. The statistical results are supported with microscopic photographs of fracture sections, and validated by comparing them with previous studies performed on non-reinforced PLA material, proving that the introduction of wood fibers in PLA matrix reduces the resistance of raw PLA by hindering the cohesion between filaments and generating voids inside it. Lastly, five solid Timberfill specimens manufactured by injection molding were also tested to compare their strength with the additive manufactured samples. Results prove that treating the wood-PLA through additive manufacturing results in an improvement of its resistance and elastic properties, being the Young’s module almost 25% lower than the injected material.


Additive manufacturing 3D printing Fused filament fabrication Young’s module Flexural strength Timberfill 



Additive manufacturing


Fused filament fabrication


Design of experiments


Analysis of variance


Funding information

J.J. Roa acknowledges the Serra Húnter programme of the Generalitat de Catalunya for the financial support.


  1. 1.
    Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4CrossRefGoogle Scholar
  2. 2.
    Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers. A review. Addit Manuf 21:1–16CrossRefGoogle Scholar
  3. 3.
    Cuan-Urquizo E, Barocio E, Tejada-Ortigoza V, Pipes RB, Rodriguez CA, Roman-Flores A (2019) Characterization of the mechanical properties of FFF structures and materials. A review on the experimental, computational and theoretical approaches. Materials (Basel) 12(6)CrossRefGoogle Scholar
  4. 4.
    Jerez-Mesa R, Travieso-Rodriguez JA, Lluma-Fuentes J, Gomez-Gras G, Puig D (2017) Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manuf 13:872–879CrossRefGoogle Scholar
  5. 5.
    Afrose MF, Masood SH, Lovenitt P, Nikzad M, Sbarski I (2015) Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progress Addit Manuf 1(1–2):21–28Google Scholar
  6. 6.
    Gomez-Gras G, Jerez-Mesa R, Travieso-Rodriguez JA, Lluma-Fuentes J (2018) Fatigue performance of fused filament fabrication PLA specimens. Mater Des 140:278–285CrossRefGoogle Scholar
  7. 7.
    Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15:107–122CrossRefGoogle Scholar
  8. 8.
    Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials (Basel) 8(9):5834–5846CrossRefGoogle Scholar
  9. 9.
    Shabat D, Rosenthal Y, Ashkenazi D, Stern A (2017) Mechanical and structural characteristics of fused deposition modeling ABS material. Annals of “Dunarea de Jos” University, Fascicle XII, Welding Equipment and Technology 28:16–24Google Scholar
  10. 10.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295CrossRefGoogle Scholar
  11. 11.
    Araya-Calvo M, López-Gómez I, Chamberlain-Simon N, León-Salazar JL, Guillén-Girón T, Corrales-Cordero JS (2018) Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology. Addit Manuf 22:157–164CrossRefGoogle Scholar
  12. 12.
    El Margi A, El Mabrouk K, Vaudreui S, Ebn Touhami M (2019) Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. J Thermoplast Compos Mater p. 0892705719847244Google Scholar
  13. 13.
    Jo MY, Ryu YJ, Ko JH, Yoon JS (2012) Effects of compatibilizers on the mechanical properties of ABS/PLA composites. J Appl Polym Sci 125(S2):E231–E238CrossRefGoogle Scholar
  14. 14.
    Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L (2015) 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 16(7):15118–15135CrossRefGoogle Scholar
  15. 15.
    Cantrell JT, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C, Ifju PG (2017) Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp J 23(4):811–824CrossRefGoogle Scholar
  16. 16.
    Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246CrossRefGoogle Scholar
  17. 17.
    Bagheri A, Buj-Corral I, Ferrer M, Pastor MM, Roure F (2018) Determination of the elasticity modulus of 3D-printed octet-truss structures for use in porous prosthesis implants. Materials 11(12):2420CrossRefGoogle Scholar
  18. 18.
    Ozcelik B, Ozbay A, Demirbas E (2010) Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int Commun Heat Mass Transfer 37(9):1359–1365CrossRefGoogle Scholar
  19. 19.
    Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453–458CrossRefGoogle Scholar
  20. 20.
    Quintana R, Choi JW, Puebla K, Wicker R (2009) Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens. Int J Adv Manuf Technol 46(1–4):201–215Google Scholar
  21. 21.
    Galantucci LM, Lavecchia F, Percoco G (2010) Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann 59:247–250CrossRefGoogle Scholar
  22. 22.
    Maidin S, Mohamed AS, Akmal S, Mohamed SB, Wong JHU (2018) Feasibility study of vacuum technology integrated fused deposition modeling to reduce staircase effect. Journal of Fundamental and Applied Sciences 10(1S):633–645Google Scholar
  23. 23.
    Lederle F, Meyer F, Brunotte GP, Kaldun C, Hübner EG (2016) Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen. Progress Addit Manuf 1(1-2):3–7CrossRefGoogle Scholar
  24. 24.
    Malinauskas M, Rekštytė S, Lukoševičius L, Butkus S, Balčiūnas E, Pečiukaitytė M, Baltriukienė B, Bukelskienė V, Butkevičius A, Kucevičius P, Rutkūnas V, Juodkazis S (2014) 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5(4):839–858CrossRefGoogle Scholar
  25. 25.
    Abedini A, Asiyabi T, Campbell HR, Hasanzadeh R, Azdast T (2019) On fabrication and characteristics of injection molded ABS/Al2O3 nanocomposites. Int J Adv Manuf Technol 102(5–8):1747–1758CrossRefGoogle Scholar
  26. 26.
    Nejad SJ, Hasanzadeh R, Doniavi A, Modanloo V (2017) Finite element simulation analysis of laminated sheets in deep drawing process using response surface method. Int J Adv Manuf Technol 93(9–12):3245–3259CrossRefGoogle Scholar
  27. 27.
    De Ciurana J, Serenóa L, Vallès È (2013) Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. Procedia CIRP 5:152–157CrossRefGoogle Scholar
  28. 28.
    Testing A.S.f. and Materials. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four-point bending. (2002) ASTM InternationalGoogle Scholar
  29. 29.
    Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters a review of current research and future prospects. Adv Manuf 3:42–53CrossRefGoogle Scholar
  30. 30.
    Travieso-Rodriguez JA, Jerez-Mesa R, Llumà J, Traver-Ramos O, Gomez-Gras G, Roa Rovira JJ (2019) Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials 12(23):3859CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Escola d’Enginyeria de Barcelona Est, Mechanical Engineering DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Faculty of Sciences and Technology, Engineering DepartmentUniversitat de Vic-Universitat Central de CatalunyaVicSpain
  3. 3.Escola d’Enginyeria de Barcelona Est, Materials Science and Metallurgical Engineering DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations