Advertisement

Thickness dependent yielding behavior and formability of AA6082-T6 alloy: experimental observation and modeling

  • Onur ÇavuşoğluEmail author
  • Halit İlhan Sürücü
  • Serkan Toros
  • Mahmut Alkan
ORIGINAL ARTICLE

Abstract

This study analyzes thickness-dependent of the yielding behavior and forming limit diagrams (FLDs) of the AA6082-T6 aluminum alloy sheet. Mechanical behavior of the materials of 1 and 1.5 mm sheet thickness is observed having performed anisotropy and tensile tests at 0°, 15°, 30°, 45°, 60°, 75°, and 90° to the rolling direction. By using Hill-48 and Barlat-89 yield criteria, r-value and yield stress relations were defined and yield loci were obtained. Forming limit diagrams were created using experimental data and Marciniak-Kuczynski (MK) model. It was observed that increased sheet thickness also increases anisotropy while decreasing yield stress; yield locus was found to be smaller. The formability of the material increased as the sheet thickness increases.

Keywords

6082 Yield locus Anisotropy Sheet metal forming Forming limit diagram 

Notes

References

  1. 1.
    Pasaoglu G, Honselaar M, Thiel C (2012) Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe. Energy Policy 40:404–421.  https://doi.org/10.1016/j.enpol.2011.10.025 CrossRefGoogle Scholar
  2. 2.
    Hirsch J (2011) Aluminium in innovative light-weight car design. Mater Trans 52:818–824.  https://doi.org/10.2320/matertrans.L-MZ201132
  3. 3.
    Hirsch J (2014) Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc China (English Ed 24:1995–2002. doi:  https://doi.org/10.1016/S1003-6326(14)63305-7 CrossRefGoogle Scholar
  4. 4.
    Pourboghrat F, Venkatesan S, Carsley JE (2013) LDR and hydroforming limit for deep drawing of AA5754 aluminum sheet. J Manuf Process 15:600–615.  https://doi.org/10.1016/j.jmapro.2013.04.003 CrossRefGoogle Scholar
  5. 5.
    Cai Z, Wan M, Liu Z et al (2017) Thermal-mechanical behaviors of dual-phase steel sheet under warm-forming conditions. Int J Mech Sci 126:79–94.  https://doi.org/10.1016/j.ijmecsci.2017.03.009 CrossRefGoogle Scholar
  6. 6.
    Abovyan T, Kridli GT, Friedman PA, Ayoub G (2014) Formability prediction of aluminum sheet alloys under isothermal forming conditions. J Manuf Process 20:406–413.  https://doi.org/10.1016/j.jmapro.2014.08.003 CrossRefGoogle Scholar
  7. 7.
    Bruschi S, Altan T, Banabic D et al (2014) CIRP annals - manufacturing technology testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann - Manuf Technol 63:727–749.  https://doi.org/10.1016/j.cirp.2014.05.005 CrossRefGoogle Scholar
  8. 8.
    Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminum alloys at elevated temperatures - part 2: numerical modeling and experimental verification. Int J Plast 22:342–373.  https://doi.org/10.1016/j.ijplas.2005.03.006 CrossRefzbMATHGoogle Scholar
  9. 9.
    Ozturk F, Toros S, Kilic S, Bas MH (2009) Effects of cold and warm temperatures on springback of aluminium-magnesium alloy 5083-H111. Proc Inst Mech Eng Part B-Journal Eng Manuf 223:427–431.  https://doi.org/10.1243/09544054jem1335 CrossRefGoogle Scholar
  10. 10.
    Wang H, Wan M, Yan Y (2012) Effect of flow stress—strain relation on forming limit of 5754O aluminum alloy. Trans Nonferrous Met Soc China 22:2370–2378.  https://doi.org/10.1016/S1003-6326(11)61473-8 CrossRefGoogle Scholar
  11. 11.
    Toros S, Polat A, Ozturk F (2012) Formability and springback characterization of TRIP800 advanced high strength steel. Mater Des 41:298–305.  https://doi.org/10.1016/j.matdes.2012.05.006 CrossRefGoogle Scholar
  12. 12.
    Abedrabbo N, Pourboghrat F, Carsley J (2007) Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int J Plast 23:841–875.  https://doi.org/10.1016/j.ijplas.2006.10.005 CrossRefzbMATHGoogle Scholar
  13. 13.
    Mirfalah-Nasiri SM, Basti A, Hashemi R (2016) Forming limit curves analysis of aluminum alloy considering the through-thickness normal stress, anisotropic yield functions and strain rate. Int J Mech Sci 117:93–101.  https://doi.org/10.1016/j.ijmecsci.2016.08.011 CrossRefGoogle Scholar
  14. 14.
    Naka T, Uemori T, Hino R et al (2008) Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet. J Mater Process Technol 201:395–400.  https://doi.org/10.1016/j.jmatprotec.2007.11.189 CrossRefGoogle Scholar
  15. 15.
    Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminum alloys at elevated temperatures - part 1: material characterization. Int J Plast 22:314–341.  https://doi.org/10.1016/j.ijplas.2005.03.005 CrossRefzbMATHGoogle Scholar
  16. 16.
    Kilpatrick W, Brown D, McMurray RJ, Leacock AG (2010) The effect of serrated yielding on the determination of r-values in aluminium alloys and yield locus calibration. Mater Sci Eng A 527:7557–7564.  https://doi.org/10.1016/j.msea.2010.07.082 CrossRefGoogle Scholar
  17. 17.
    Anderson NE, Leacock AG, McMurray RJ, Brown D (2009) The evolution of yielding in 7075-O aluminium alloy: experimental observations and modelling. Int J Mater Form 2:403–406.  https://doi.org/10.1007/s12289-009-0492-y CrossRefGoogle Scholar
  18. 18.
    Lăzărescu L, Ciobanu I, Nicodim IP et al (2013) Effect of the mechanical parameters used as input data in the yield criteria on the accuracy of the finite element simulation of sheet metal forming processes. Key Eng Mater 554–557:204–209.  https://doi.org/10.4028/www.scientific.net/KEM.554-557.204 CrossRefGoogle Scholar
  19. 19.
    Dilmec M, Halkaci HS, Ozturk F et al (2013) Effects of sheet thickness and anisotropy on forming limit curves of AA2024-T4. Int J Adv Manuf Technol 67:2689–2700.  https://doi.org/10.1007/s00170-012-4684-0 CrossRefGoogle Scholar
  20. 20.
    Budai D, Tisza M, Kovács PZ (2016) Investigation of the formability of EN AW 5754 aluminium alloy sheets with different thickness. MultiScience - XXX. microCAD Int. Multidiscip. Sci. Conf. Hungary, In, pp 21–22Google Scholar
  21. 21.
    Amaral R, Santos AD, José CDS, Miranda S (2017) Formability prediction for AHSS materials using damage models. J Phys Conf Ser.  https://doi.org/10.1088/1742-6596/843/1/012018 Google Scholar
  22. 22.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals Author ( s ): R . Hill Source : Proceedings of the Royal Society of London . Series A , Mathematical and Physical Published by : Royal Society Stable URL : http://www.jstor.org/stable/97993 A. Proceeding R Soc London 193:281–297
  23. 23.
    Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5:51–66. doi:  https://doi.org/10.1016/0749-6419(89)90019-3 CrossRefGoogle Scholar
  24. 24.
    Tajally M, Emadoddin E (2011) Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater Des 32:1594–1599.  https://doi.org/10.1016/j.matdes.2010.09.001 CrossRefGoogle Scholar
  25. 25.
    ASTM Standard E2218 (2002) Standard test method for determining forming limit curves. ASTM B Stand 02:1–15. doi:  https://doi.org/10.1520/E2218-02R08.2
  26. 26.
    Ozturk F, Toros S, Kilic S (2014) Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel. Procedia Eng 81:760–765.  https://doi.org/10.1016/j.proeng.2014.10.073 CrossRefGoogle Scholar
  27. 27.
    Toros S (2017) Effect of anisotropy determination methods on forming limit curve prediction of 304L stainless steel Omer Halisdemir University Journal of Engineering Sciences. 6:737–751Google Scholar
  28. 28.
    Toros S (2013) Investigation and modelling of formability of TRIP800 steel. Niğde University, Graduate School of Natural and Applied Sciences, Ph.D. ThesisGoogle Scholar
  29. 29.
    Zadpoor AA, Sinke J, Benedictus R (2009) The effects of thickness on the formability of 2000 and 7000 series high strength aluminum alloys. Key Eng Mater 410–411:459–466.  https://doi.org/10.4028/www.scientific.net/KEM.410-411.459 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Onur Çavuşoğlu
    • 1
    Email author
  • Halit İlhan Sürücü
    • 2
  • Serkan Toros
    • 3
  • Mahmut Alkan
    • 3
  1. 1.Faculty of Technology, Department of Manufacturing EngineeringGazi UniversityAnkaraTurkey
  2. 2.Bor Vacational SchoolNiğde Ömer Halisdemir UniversityNiğdeTurkey
  3. 3.Faculty of Engineering, Department of Mechanical EngineeringNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations