Advertisement

Processing and tooling considerations in joining by forming technologies; part B—friction-based welding

  • Masoud Salamati
  • Mahdi SoltanpourEmail author
  • Ali Fazli
ORIGINAL ARTICLE
  • 29 Downloads

Abstract

Solid-state welding is a variant of joining by forming technologies, in which metallurgical bonds are established as a result of severe plastic deformation at the interface of the workpieces. Solid-state welding is a promising tool to manufacture highly reliable joints of two or more metallic workpieces, either similar or dissimilar. However, some processes are also developed to perform solid-state welding on polymers and polymer matrix composites. Although solid-state welding methods are used to heat the workpiece, heat-affected zone (HAZ) is generally avoided or is considerably narrower compared to the conventional fusion welding and arc welding techniques, due to the more controlled heat input. Solid-state bonds can be established using frictional work, bulk metal forming, and severe energy of a high-speed impact. In this article, the processing conditions required to establish solid-state bonds by frictional work are reviewed. Several tooling and processing considerations are taken into account. Material-related aspects, process optimization techniques, joint mechanical behavior, and the influence of various processing and tooling parameters on mechanical behavior are the fields of concentration in this study.

Keywords

Joining Plastic deformation Mechanical processing Solid-state welding Weld interface Intermetallic compound 

Nomenclature

ABS

Acrylonytrile butadine styrene

AFS

Aluminum foam sandwich

AHSS

Advanced high-strength steel

ALE

Arbitrary Lagrangian–Eulerian

AMC

Aluminum matrix composite

ANN

Artificial neural network

ANOVA

Analysis of variance

AS

Advancing side

AZ

Anchoring zone

BM

Base material

CDFW

Continuous drive friction welding

CDRX

Continuous dynamic recrystallization

CFD

Computational fluid dynamics

CFRP

Carbon fiber–reinforced plastic

CRF

Complete recrystallization fraction

DRV

Dynamic recovery

DRX

Dynamic recrystallization

EHC

Electrohydraulic clinching

EMC

Electromagnetic clinching

EXW

Explosive welding

EZ

Embedded zone

FDM

Fused deposition modeling

FE

Finite element

FEA

Finite element analysis

FEM

Finite element method

FricRiveting

Friction riveting

FRP

Fiber-reinforced plastic

FSC

Friction stir clinching

FSJ

Friction spot joining

FSpW

Friction spot welding

FSSW

Friction stir spot welding

FSW

Friction stir welding

FW

Friction welding

FZ

Fusion zone

GA

Genetic algorithm

GDRX

Geometric dynamic recrystallization

GFRP

Glass fiber-reinforced plastic

HAGB

High angle grain boundary

HAZ

Heat-affected zone

HFLFW

High-frequency linear friction welding

HPT

Holding pressure time

HVIW

High-velocity impact welding

ICJ

Injection clinching joining

IFW

Inertia friction welding

IMC

Intermetallic compound

LAGB

Low angle grain boundary

LFW

Linear friction welding

LIW

Laser impact welding

MFSC

Modified friction stir clinching

MHAZ

Metal heat-affected zone

MIG

Metal inert gas welding

MMC

Metal matrix composite

MPW

Magnetic pulse welding

MTMAZ

Metal thermomechanically affected zone

NRP

Nanoreinforcing particle

OFW

Orbital friction welding

PA6

Polyamide 6

PC

Polycarbonate

PCBN

Polycrystalline cubic boron nitride

PEEK

Polyether-ether-ketone

PEI

Polyetherimide

PFSSW

Projection friction stir spot welding

PHAZ

Polymer heat-affected zone

PMC

Polymer matrix composite

PPS

Polyphenylene sulfide

PSO

Particle swarm optimization

PTMAZ

Polymer thermomechanically affected zone

PWHT

Post-weld heat treatment

RAFSSW

Rotating anvil friction stir spot welding

RFW

Rotary friction welding

RS

Retreating side

RSM

Response surface methodology

RSW

Resistance spot welding

SA

Simulated annealing

SPD

Severe plastic deformation

SPH

Smoothed particles hydrodynamics

SSFSW

Stationary shoulder friction stir welding

SZ

Stir zone

TAFW

Tool-assisted friction welding

THFSW

Threaded hole friction stir welding

TIG

Tungsten inert gas welding

TMAZ

Thermomechanically affected zone

TOPSIS

Technique for order of performance by similarity to ideal solution

TWI

The Welding Institute

ULSF

Ultimate lap shear force

URF

Ultrasonic recrystallization factor

UTS

Ultimate tensile strength

VCFSW

Vertical compensation friction stir welding

VFAW

Vaporizing foil actuator welding

VR

Volumetric ratio

WC

Tungsten carbide

YS

Yield strength

Notes

References

  1. 1.
    Salamati M, Soltanpour M, Fazli A, Zajkani A (2019) Processing and tooling considerations in joining by forming technologies; part A—mechanical joining. Int J Adv Manuf Technol 101:261–315.  https://doi.org/10.1007/s00170-018-2823-y CrossRefGoogle Scholar
  2. 2.
    Groche P, Wohletz S, Brenneis M et al (2014) Joining by forming—a review on joint mechanisms , applications and future trends. J Mater Process Technol 214:1972–1994.  https://doi.org/10.1016/j.jmatprotec.2013.12.022 CrossRefGoogle Scholar
  3. 3.
    Mori K, Bay N, Fratini L et al (2013) Joining by plastic deformation. CIRP Ann - Manuf Technol 62:673–694.  https://doi.org/10.1016/j.cirp.2013.05.004 CrossRefGoogle Scholar
  4. 4.
    (2002) Solid state welding. In: www.totalmateria.com. Accessed Dec 2017
  5. 5.
    Zhang W (1994) Bond formation in cold welding of metals. CopenhagenGoogle Scholar
  6. 6.
    Taban E, Gould JE, Lippold JC (2010) Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization. Mater Des 31:2305–2311.  https://doi.org/10.1016/j.matdes.2009.12.010 CrossRefGoogle Scholar
  7. 7.
    Sarsilmaz F, Kirik I, Batı S (2017) Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding. J Manuf Process 28:131–136.  https://doi.org/10.1016/j.jmapro.2017.05.025 CrossRefGoogle Scholar
  8. 8.
    Besler FA, Schindele P, Grant RJ, Stegmüller MJR (2016) Friction crush welding of aluminium, copper and steel sheetmetals with flanged edges. J Mater Process Technol 234:72–83.  https://doi.org/10.1016/j.jmatprotec.2016.03.012 CrossRefGoogle Scholar
  9. 9.
    Won S, Seo B, Park JM et al (2018) Corrosion behaviors of friction welded dissimilar aluminum alloys. Mater Charact 144:652–660.  https://doi.org/10.1016/j.matchar.2018.08.014 CrossRefGoogle Scholar
  10. 10.
    Vairis A, Frost M (1998) High frequency linear friction welding of a titanium alloy. Wear J 217:117–131CrossRefGoogle Scholar
  11. 11.
    Sahin M (2007) Evaluation of the joint-interface properties of austenitic-stainless steels (AISI 304) joined by friction welding. J Mater Des 28:2244–2250.  https://doi.org/10.1016/j.matdes.2006.05.031 CrossRefGoogle Scholar
  12. 12.
    Li W, Vairis A, Preuss M, Ma T (2016) Linear and rotary friction welding review. Int Mater Rev 61:71–100.  https://doi.org/10.1080/09506608.2015.1109214 CrossRefGoogle Scholar
  13. 13.
    Alves ED, Neto FP, An CY, Silva C (2012) Experimental determination of temperature during rotary friction welding of AA1050 aluminum with AISI 304 stainless steel. J Aerosp Technol Manag 4:61–67CrossRefGoogle Scholar
  14. 14.
    Kimura M, Fuji A (2016) Characteristics of pure-titanium and low carbon steel friction-welded joint with post-weld heat-treatment. Mater Sci Technol 32:1016–1024.  https://doi.org/10.1080/02670836.2015.1104084 CrossRefGoogle Scholar
  15. 15.
    Sahin AZ, Yibas BS, Ahmed M, Nickel J (1998) Analysis of the friction welding process in relation to the welding of copper and steel bars. J Mater Process Technol 82:127–136CrossRefGoogle Scholar
  16. 16.
    Meshram SD, Mohandas T, Reddy GM (2007) Friction welding of dissimilar pure metals. J Mater Process Technol 184:330–337.  https://doi.org/10.1016/j.jmatprotec.2006.11.123 CrossRefGoogle Scholar
  17. 17.
    Sahin M (2005) Joining with friction welding of high-speed steel and medium-carbon steel. J Mater Process Technol 168:202–210.  https://doi.org/10.1016/j.jmatprotec.2004.11.015 CrossRefGoogle Scholar
  18. 18.
    Satyanarayana VV, Reddy GM, Mohandas T (2005) Dissimilar metal friction welding of austenitic – ferritic stainless steels. J Mater Process Technol 160:128–137.  https://doi.org/10.1016/j.jmatprotec.2004.05.017 CrossRefGoogle Scholar
  19. 19.
    Adalarasan R, Shanmuga Sundaram A (2016) Study of friction welding characteristics of Al / SiC composite and application of grey-based TOPSIS. J Chin Inst Eng 39:484–492.  https://doi.org/10.1080/02533839.2015.1125792 CrossRefGoogle Scholar
  20. 20.
    Sathiya P, Aravindan S, Noorulhaq A (2007) Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel. Int J Adv Manuf Technol 31:1076–1082.  https://doi.org/10.1007/s00170-005-0285-5 CrossRefGoogle Scholar
  21. 21.
    (2018) Friction welding: principle, working, types, application, advantages and disadvantages. In: http://www.mech4study.com/2017/04/friction-welding-principle-working-types-application-advantages-and-disadvantages.html. Accessed Apr 2019
  22. 22.
    Jedrasiak P, Shercliff HR, McAndrew AR, Colegrove PA (2018) Thermal modelling of linear friction welding. Mater Des 156:362–369.  https://doi.org/10.1016/j.matdes.2018.06.043 CrossRefGoogle Scholar
  23. 23.
    Lumley R (2011) Fundamentals of aluminium metallurgy; production, processing and applicationsGoogle Scholar
  24. 24.
    Kumar R, Singh R, Ahuja IP (2018) Investigations of mechanical, thermal and morphological properties of FDM fabricated parts for friction welding applications. Measurement 120:11–20.  https://doi.org/10.1016/j.measurement.2018.02.006 CrossRefGoogle Scholar
  25. 25.
    Kumar R, Singh R, Ahuja IP et al (2018) Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos Part B 132:244–257.  https://doi.org/10.1016/j.compositesb.2017.08.018 CrossRefGoogle Scholar
  26. 26.
    Liu FC, Nelson TW (2018) Twining and dynamic recrystallization in austenitic alloy 718 during friction welding. Mater Charact 140:39–44.  https://doi.org/10.1016/j.matchar.2018.03.035 CrossRefGoogle Scholar
  27. 27.
    Damodaram R, Raman SGS, Rao KP (2014) Effect of post-weld heat treatments on microstructure and mechanical properties of friction welded alloy 718 joints. Mater Des 53:954–961CrossRefGoogle Scholar
  28. 28.
    Huang ZW, Li HY, Baxter G et al (2011) Electron microscopy characterization of the weld line zones of an inertia friction welded superalloy. J Mater Process Technol 211:1927–1936.  https://doi.org/10.1016/j.jmatprotec.2011.06.019 CrossRefGoogle Scholar
  29. 29.
    Ola OT, Ojo OA, Wanjara P, Chaturvedi MC (2012) A study of linear friction weld microstructure in single crystal CMSX-486 superalloy. Metall Mater Trans A 43:921–933CrossRefGoogle Scholar
  30. 30.
    Karadge M, Preuss M, Withers PJ, Bray S (2008) Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys. Mater Sci Eng A 491:446–453CrossRefGoogle Scholar
  31. 31.
    Mogami H, Matsuda T, Sano T et al (2018) High-frequency linear friction welding of aluminum alloys. Mater Des 139:457–466.  https://doi.org/10.1016/j.matdes.2017.11.043 CrossRefGoogle Scholar
  32. 32.
    Rafi HK, Ram GDJ, Phanikumar G, Rao KP (2010) Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6. Mater Des 31:2375–2380.  https://doi.org/10.1016/j.matdes.2009.11.065 CrossRefGoogle Scholar
  33. 33.
    Ozdemir N, Sarsilmaz F, Hascalik A (2007) Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel. J Mater Des 28:301–307.  https://doi.org/10.1016/j.matdes.2005.06.011 CrossRefGoogle Scholar
  34. 34.
    Fukumoto S, Tsubakino H, Aritoshi M et al (2002) Dynamic recrystallisation phenomena of commercial purity aluminium during friction welding. Mater Sci Technol 18:219–225.  https://doi.org/10.1179/026708301225000635 CrossRefGoogle Scholar
  35. 35.
    Dalgaard E, Wanjara P, Gholipour J et al (2012) Linear friction welding of a near-β titanium alloy. Acta Mater 60:770–780CrossRefGoogle Scholar
  36. 36.
    Su Y, Li W, Wang X et al (2018) On microstructure and property differences in a linear friction welded near-alpha titanium alloy joint. J Manuf Process 36:255–263.  https://doi.org/10.1016/j.jmapro.2018.10.017 CrossRefGoogle Scholar
  37. 37.
    Kimura M, Suzuki K, Kusaka M, Kaizu K (2017) Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel. J Manuf Process 25:116–125.  https://doi.org/10.1016/j.jmapro.2016.12.001 CrossRefGoogle Scholar
  38. 38.
    Astarita A, Scherillo F, Curioni M et al (2016) Study of the linear friction welding process of dissimilar Ti-6Al-4V–stainless steel joints. Mater Manuf Process.  https://doi.org/10.1080/10426914.2016.1151048 CrossRefGoogle Scholar
  39. 39.
    Ogura T, Miyoshi K, Matsumura T et al (2018) Improvement of joint strength in dissimilar friction welding of Ti-6Al-4V alloy to type-718 nickel-based alloy using the Au–Ni interlayer. Sci Technol Weld Join.  https://doi.org/10.1080/13621718.2018.1535782 CrossRefGoogle Scholar
  40. 40.
    Arivazhagan N, Singh S, Prakash S, Reddy GM (2011) Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding. Mater Des 32:3036–3050.  https://doi.org/10.1016/j.matdes.2011.01.037 CrossRefGoogle Scholar
  41. 41.
    Murakami T, Nakata K, Tong H, Ushio M (2003) Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire. ISIJ Int 43:1596–1602CrossRefGoogle Scholar
  42. 42.
    Li X, Li J, Liao Z et al (2018) Effect of rotation speed on friction behavior and radially non-uniform local mechanical properties of AA6061-T6 rotary friction welded joint. J Adhes Sci Technol 32:1987–2006.  https://doi.org/10.1080/01694243.2018.1458771 CrossRefGoogle Scholar
  43. 43.
    Lukin VI, Samorukov ML, Kovalchuk VG (2017) Modelling rotary friction welding of VZh175 high creep strength nickel alloy. Weld Int 31:758–763.  https://doi.org/10.1080/09507116.2017.1318496 CrossRefGoogle Scholar
  44. 44.
    Nan X, Xiong J, Jin F et al (2019) Modeling of rotary friction welding process based on maximum entropy production principle. J Manuf Process 37:21–27.  https://doi.org/10.1016/j.jmapro.2018.11.016 CrossRefGoogle Scholar
  45. 45.
    Wanjara P, Jahazi M (2005) Linear friction welding of Ti-6Al-4V: processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A 36:2149–2164CrossRefGoogle Scholar
  46. 46.
    Lis A, Mogami H, Matsuda T et al (2018) Hardening and softening effects in aluminium alloys during high-frequency linear friction welding. J Mater Process Technol 255:547–558.  https://doi.org/10.1016/j.jmatprotec.2018.01.002 CrossRefGoogle Scholar
  47. 47.
    Sathiya P, Aravindan S, Haq AN, Paneerselvam K (2008) Optimization of friction welding parameters using evolutionary computational techniques. J Mater Process Technol 9:2576–2584.  https://doi.org/10.1016/j.jmatprotec.2008.06.030 CrossRefGoogle Scholar
  48. 48.
    Li W, Ma T, Li J (2010) Numerical simulation of linear friction welding of titanium alloy: effects of processing parameters. Mater Des 31:1497–1507.  https://doi.org/10.1016/j.matdes.2009.08.023 CrossRefGoogle Scholar
  49. 49.
    Sluzalec A (1990) Thermal effects in friction welding. Int J Mech Sci 32:467–478CrossRefGoogle Scholar
  50. 50.
    D’Alvise L, Massoni E, Walløe SJ (2002) Finite element modelling of the inertia friction welding process between dissimilar materials. J Mater Process Technol 126:387–391CrossRefGoogle Scholar
  51. 51.
    Qinghua L, Fuguo L, Miaoquan L et al (2006) Finite element simulation of deformation behavior in friction welding of Al-Cu-Mg alloy. J Mater Eng Perform 15:627–631.  https://doi.org/10.1361/105994906X150821 CrossRefGoogle Scholar
  52. 52.
    Cola MJ, Hussen GNA (2001) Heat generation in the inertia welding of dissimilar tubes. Weld J Res Suppl:246–252Google Scholar
  53. 53.
    Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, New YorkzbMATHCrossRefGoogle Scholar
  54. 54.
    Wang FF, Li WY, Li JL, Vairis A (2014) Process parameter analysis of inertia friction welding nickel-based superalloy. Int J Adv Manuf Technol 71:1909–1918CrossRefGoogle Scholar
  55. 55.
    McAndrew AR, Colegrove PA, Flipo BCD, Bühr C (2016) 3D modelling of Ti–6Al–4V linear friction welds. Sci Technol Weld Join.  https://doi.org/10.1080/13621718.2016.1263439 CrossRefGoogle Scholar
  56. 56.
    McAndrew AR, Colegrove PA, Addison AC et al (2014) Energy and force analysis of Ti–6Al–4V linear friction welds for computational modeling input and validation data. Metall Mater Trans A Phys Metall Mater Sci 45:6118–6128CrossRefGoogle Scholar
  57. 57.
    Kimura M, Choji M, Kusaka M et al (2006) Effect of friction welding conditions on mechanical properties of A5052 aluminium alloy friction welded joint. Sci Technol Weld Join 11:209–215CrossRefGoogle Scholar
  58. 58.
    Tung DJ, Mahaffey DW, Senkov ON et al (2018) Transient behaviour of torque and process efficiency during inertia friction welding. Sci Technol Weld Join.  https://doi.org/10.1080/13621718.2018.1491377 CrossRefGoogle Scholar
  59. 59.
    Bennett C (2015) Finite element modelling of the inertia friction welding of a CrMoV alloy steel including the effects of solid-state phase transformations. J Manuf Process 18:84–91CrossRefGoogle Scholar
  60. 60.
    Senkov ON, Mahaffey DW, Semiatin SL (2017) Effect of process parameters on process efficiency and inertia friction welding behavior of the superalloys LSHR and Mar-M247. J Mater Process Technol 250:156–168CrossRefGoogle Scholar
  61. 61.
    Thomas WM, Nicholas ED, Needham JC, et al (1991) Friction stir butt weldingGoogle Scholar
  62. 62.
    Besharati Givi MK, Asadi P (2014) Advances in friction stir welding and processingGoogle Scholar
  63. 63.
    Zhang Y, Sato YS, Kokawa H et al (2008) Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Mater Sci Eng A 485:448–455.  https://doi.org/10.1016/j.msea.2007.08.051 CrossRefGoogle Scholar
  64. 64.
    Xunhong W, Kuaishe W (2006) Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy. Mater Sci Eng A 431:114–117.  https://doi.org/10.1016/j.msea.2006.05.128 CrossRefGoogle Scholar
  65. 65.
    Burak M, Meran C (2012) The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Mater Des 33:376–383.  https://doi.org/10.1016/j.matdes.2011.04.013 CrossRefGoogle Scholar
  66. 66.
    Abdollah-Zadeh A, Saeid T, Sazgari B (2008) Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. J Alloys Compd 460:535–538.  https://doi.org/10.1016/j.jallcom.2007.06.009 CrossRefGoogle Scholar
  67. 67.
    Coelho RS, Kostka A, dos Santos JF, Kaysser-pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183.  https://doi.org/10.1016/j.msea.2012.06.076 CrossRefGoogle Scholar
  68. 68.
    Uzun H, Dalle C, Argagnotto A et al (2005) Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel. Mater Des 26:41–46.  https://doi.org/10.1016/j.matdes.2004.04.002 CrossRefGoogle Scholar
  69. 69.
    Peng P, Wang K, Wang W et al (2019) High-performance aluminium foam sandwich prepared through friction stir welding. Mater Lett 236:295–298.  https://doi.org/10.1016/j.matlet.2018.10.125 CrossRefGoogle Scholar
  70. 70.
    Pang Q, Hu ZL, Song JS (2019) Preparation and mechanical properties of closed-cell CNTs-reinforced Al composite foams by friction stir welding. Int J Adv Manuf Technol 103:3125–3136CrossRefGoogle Scholar
  71. 71.
    Dinda GP, Ramakrishnan A (2019) Friction stir welding of high-strength steel. Int J Adv Manuf Technol 103:4763–4769CrossRefGoogle Scholar
  72. 72.
    Marre M, Ruhstorfer M, Tekkayya AE, Zaeh MF (2009) Manufacturing of light-weight frame structures by innovative joining by forming processes. Int J Mater Form 2:307–310.  https://doi.org/10.1007/s12289-009-0524-7 CrossRefGoogle Scholar
  73. 73.
    Colegrove PA, Shercliff HR (2005) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169:320–327.  https://doi.org/10.1016/j.jmatprotec.2005.03.015 CrossRefGoogle Scholar
  74. 74.
    Magalhães VM, Leitão C, Rodrigues DM (2018) Friction stir welding industrialisation and research status. Sci Technol Weld Join 23:400–409.  https://doi.org/10.1080/13621718.2017.1403110 CrossRefGoogle Scholar
  75. 75.
    Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50:143–155.  https://doi.org/10.1016/j.ijmachtools.2009.11.008 CrossRefGoogle Scholar
  76. 76.
    Buffa G, Fratini L, Ruisi VF (2009) Friction stir welding of tailored joints for industrial applications. Int J Mater Form 2:311–314.  https://doi.org/10.1007/s12289-009-0579-5 CrossRefGoogle Scholar
  77. 77.
    Shah LH, Othman NH, Gerlich A (2017) Review of research progress on aluminium–magnesium dissimilar friction stir welding. Sci Technol Weld Join.  https://doi.org/10.1080/13621718.2017.1370193 CrossRefGoogle Scholar
  78. 78.
    Kundu J, Singh H (2018) Modelling and analysis of process parameters in friction stir welding of AA5083-H321 using response surface methodology. Adv Mater Process Technol 4:183–199.  https://doi.org/10.1080/2374068x.2017.1411039 CrossRefGoogle Scholar
  79. 79.
    Reynolds AP (2000) Visualization of material flow in autogenously friction stir welds. Sci Technol Weld Join 5:120–124CrossRefGoogle Scholar
  80. 80.
    Colligan K (1999) Material flow behavior during friction stir welding of aluminum. Suppl to Weld J 78:229–237Google Scholar
  81. 81.
    London B, Mahoney M, Bingel W, et al (2003) Material flow in friction stir welding monitored with Al-SiC and Al-W composite markers. In: Symposium on friction stir welding and processing II. pp 3–10Google Scholar
  82. 82.
    Huang Y, Wang Y, Wan L et al (2016) Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy. Int J Adv Manuf Technol 87:1115–1123.  https://doi.org/10.1007/s00170-016-8603-7 CrossRefGoogle Scholar
  83. 83.
    Zeng XH, Xue P, Wang D et al (2018) Material flow and void defect formation in friction stir welding of aluminium alloys. Sci Technol Adv Mater 23:677–686.  https://doi.org/10.1080/13621718.2018.1471844 CrossRefGoogle Scholar
  84. 84.
    Santos TFA, Torres EA, Ramirez AJ (2018) Friction stir welding of duplex stainless steels. Weld Int 32:103–111.  https://doi.org/10.1080/09507116.2017.1347323 CrossRefGoogle Scholar
  85. 85.
    Firouzdar V, Kou S (2010) Formation of liquid and intermetallics in Al-to-Mg friction stir welding. Metall Mater Trans A 41:3238–3251CrossRefGoogle Scholar
  86. 86.
    Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mater Process Technol 172:110–122CrossRefGoogle Scholar
  87. 87.
    Xu L, Robson JD, Wang L, Prangnell PB (2018) The influence of grain structure on intermetallic compound layer growth rates in Fe-Al dissimilar welds. Metall Mater Trans A 49:515–526CrossRefGoogle Scholar
  88. 88.
    Haghshenas M, Abdel-Gwad A, Omran AM et al (2014) Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels. Mater Des 55:442–449CrossRefGoogle Scholar
  89. 89.
    Aghajani Derazkola H, Khodabakhshi F (2019) Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel: numerical modeling and experimental study. Int J Adv Manuf Technol 100:2401–2422CrossRefGoogle Scholar
  90. 90.
    Zhang J, Shen Y, Yao X et al (2014) Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper. Mater D 64:74–80.  https://doi.org/10.1016/j.matdes.2014.07.036 CrossRefGoogle Scholar
  91. 91.
    Mahto RP, Gupta C, Kinjawadekar M et al (2019) Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. J Manuf Process 38:370–386.  https://doi.org/10.1016/j.jmapro.2019.01.028 CrossRefGoogle Scholar
  92. 92.
    Aghajani Derazkola H, Khodabakhshi F (2019) Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel. Int J Adv Manuf Technol 102:4383–4395CrossRefGoogle Scholar
  93. 93.
    Zhong YB, Wu CS, Padhy GK (2017) Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol 239:273–283CrossRefGoogle Scholar
  94. 94.
    Padhy GK, Wu CS, Gao S (2017) Precursor ultrasonic effect on grain structure development of AA6061-T6 friction stir weld. Mater Des 116:207–218.  https://doi.org/10.1016/j.matdes.2016.11.108 CrossRefGoogle Scholar
  95. 95.
    Thomä M, Wagner G, Straß B et al (2018) Ultrasound enhanced friction stir welding of aluminum and steel: process and properties of EN AW 6061/DC04-joints. J Mater Sci Technol 34:163–172.  https://doi.org/10.1016/j.jmst.2017.10.022 CrossRefGoogle Scholar
  96. 96.
    Najib MA, Wu CS, Tian W (2019) Effect of ultrasonic vibration on the intermetallic compound layer formation in Al / Cu friction stir weld joints. J Alloys Compd 785:512–522.  https://doi.org/10.1016/j.jallcom.2019.01.170 CrossRefGoogle Scholar
  97. 97.
    Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A 545:26–37.  https://doi.org/10.1016/j.msea.2012.02.069 CrossRefGoogle Scholar
  98. 98.
    Somasekharan AC, Murr LE (2004) Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy. Mater Charact 52:49–64CrossRefGoogle Scholar
  99. 99.
    Liang Z, Chen K, Wang X et al (2013) Effect of tool offset and tool rotational speed on enhancing mechanical property of Al/Mg dissimilar FSW joints. Metall Mater Trans A 44:3721–3731CrossRefGoogle Scholar
  100. 100.
    Rai R, De A, Bhadeshia HKDH, Debroy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16:325–342.  https://doi.org/10.1179/1362171811Y.0000000023 CrossRefGoogle Scholar
  101. 101.
    Lin PC, Pan J, Pan T (2008) Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 1: welds made by a concave tool. Int J Fatigue 30:74–89.  https://doi.org/10.1016/j.ijfatigue.2007.02.016 CrossRefGoogle Scholar
  102. 102.
    Abu-Okail M, Moataz HA, Abu-oqail A et al (2018) Production of tailor-welded blanks by vertical compensation friction stir welding technique. Mater Sci Technol 34:2030–2041.  https://doi.org/10.1080/02670836.2018.1510070 CrossRefGoogle Scholar
  103. 103.
    Suhuddin UFH, Mironov S, Sato YS et al (2009) Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 57:5406–5418.  https://doi.org/10.1016/j.actamat.2009.07.041 CrossRefGoogle Scholar
  104. 104.
    Biro AL, Chenelle BF, Lados DA (2012) Processing, microstructure, and residual stress effects on strength and fatigue crack growth properties in friction stir welding: a review. Metall Mater Trans B Process Metall Mater Process Sci 43B:1622–1637.  https://doi.org/10.1007/s11663-012-9716-5 CrossRefGoogle Scholar
  105. 105.
    Ma ZY, Feng AH, Chen DL, Shen J (2018) Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit Rev Solid State Mater Sci 43:269–333.  https://doi.org/10.1080/10408436.2017.1358145 CrossRefGoogle Scholar
  106. 106.
    Jin H, Saimoto S, Ball M, Threadgill PL (2001) Characterisation of microstructure and texture in friction stir welded joints of 5754 and 5182 aluminium alloy sheets. Mater Sci Technol 17:1605–1614CrossRefGoogle Scholar
  107. 107.
    Fall A, Monajati H, Khodabandeh A et al (2019) Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy. Mater Sci Eng A 749:166–175.  https://doi.org/10.1016/j.msea.2019.01.077 CrossRefGoogle Scholar
  108. 108.
    Zhang Y, Sato YS, Kokawa H et al (2008) Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool. Mater Sci Eng A 488:25–30CrossRefGoogle Scholar
  109. 109.
    Sato YS, Kokawa H (2001) Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum. Metall Mater Trans A 32A:3023–3031CrossRefGoogle Scholar
  110. 110.
    Richmire S, Haghshenas M (2019) Friction stir welding of a hypoeutectic Al – Si alloy: microstructural, mechanical, and cyclic response. Int J Adv Manuf Technol 101:3001–3019CrossRefGoogle Scholar
  111. 111.
    Murr LE, Liu G, McClure JC (1998) A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium. J Mater Sci 33:1243–1251CrossRefGoogle Scholar
  112. 112.
    Xu N, Ueji R, Morisada Y, Fujii H (2014) Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling. Mater Des 56:20–25.  https://doi.org/10.1016/j.matdes.2013.10.076 CrossRefGoogle Scholar
  113. 113.
    Miura T, Ueji R, Fujii H (2018) Optimization of microstructure at Ni-C steel joint by friction stir welding with CO2 cooling. Weld Int 32:338–344.  https://doi.org/10.1080/09507116.2017.1346831 CrossRefGoogle Scholar
  114. 114.
    Stringham BJ, Nelson TW, Sorensen CD (2018) Non-dimensional modeling of the effects of weld parameters on peak temperature and cooling rate in friction stir welding. J Mater Process Technol 255:816–830.  https://doi.org/10.1016/j.jmatprotec.2017.11.044 CrossRefGoogle Scholar
  115. 115.
    Karlsson L (2012) Welding duplex stainless steels: a review of current recommendations. Weld World 56:65–76CrossRefGoogle Scholar
  116. 116.
    Zeng XH, Xue P, Wu LH et al (2019) Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions. J Mater Sci Technol 35:972–981.  https://doi.org/10.1016/j.jmst.2018.12.024 CrossRefGoogle Scholar
  117. 117.
    Jabbari M (2013) Effect of the preheating temperature on process time in friction stir welding of Al 6061-T6. J Eng Des 2013:5.  https://doi.org/10.1155/2013/580805 CrossRefGoogle Scholar
  118. 118.
    Sundqvist J, Kim KH, Bang HS et al (2018) Numerical simulation of laser preheating of friction stir welding of dissimilar metals. Sci Technol Weld Join 23:351–356.  https://doi.org/10.1080/13621718.2017.1391936 CrossRefGoogle Scholar
  119. 119.
    Scutelnicu E, Birsan D, Cojocaru R (2011) Research on friction stir welding and tungsten inert gas assisted friction stir welding of copper. In: Proceedings of the 4th international conference on manufacturing engineering, quality and production systems, recent advances in manufacturing engineering, Spain, pp 97–102Google Scholar
  120. 120.
    Bang HS, Bang HS, Jeon G et al (2012) Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater Des 37:48–55CrossRefGoogle Scholar
  121. 121.
    Yaduwanshi D, Bag S, Pal SS (2014) Effect of preheating in hybrid friction stir welding of aluminum alloy. J Mater Eng Perform 23:3794–3803.  https://doi.org/10.1007/s11665-014-1170-x CrossRefGoogle Scholar
  122. 122.
    Long X, Khanna SK (2005) Modelling of electrically enhanced friction stir welding process using finite element method. Sci Technol Weld Join 10:482–487.  https://doi.org/10.1179/174329305X46664 CrossRefGoogle Scholar
  123. 123.
    Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater Des 32:535–549.  https://doi.org/10.1016/j.matdes.2010.08.025 CrossRefGoogle Scholar
  124. 124.
    Edwards PD, Ramulu M (2009) Effect of process conditions on superplastic forming behaviour in Ti–6Al–4V friction stir welds. Sci Technol Weld Join 14:669–680CrossRefGoogle Scholar
  125. 125.
    Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32:2879–2884CrossRefGoogle Scholar
  126. 126.
    Azizieh M, Sadeghi Alavijeh A, Abbasi M et al (2016) Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds. Mater Chem Phys 170.  https://doi.org/10.1016/j.matchemphys.2015.12.046 CrossRefGoogle Scholar
  127. 127.
    Cavaliere P, Squillace A, Panella F (2008) Effect of welding parameters on mechanical and microstructural properties of AA6082 joints. J Mater Process Technol 200:364–372.  https://doi.org/10.1016/j.jmatprotec.2007.09.050 CrossRefGoogle Scholar
  128. 128.
    Pan F, Xu A, Deng D et al (2016) Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn. Mater Des 110:266–274.  https://doi.org/10.1016/j.matdes.2016.07.146 CrossRefGoogle Scholar
  129. 129.
    Huang X, Reynolds AP (2018) Effects of the friction stir welding process variants on residual stress. Sci Technol Weld Join 23:279–286.  https://doi.org/10.1080/13621718.2017.1377335 CrossRefGoogle Scholar
  130. 130.
    Jagathesh K, Jenarthanan MP, Babu PD, Chanakyan C (2017) Analysis of factors influencing tensile strength in dissimilar welds of AA2024 and AA6061 produced by friction stir welding (FSW). Aust J Mech Eng 15:19–26.  https://doi.org/10.1080/14484846.2015.1093229 CrossRefGoogle Scholar
  131. 131.
    Elnabi MMA, Elshalakany A, Abdel-Mottaleb MM et al (2019) Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar AA5454 – AA7075 aluminum alloys. J Mater Res Technol.  https://doi.org/10.1016/j.jmrt.2018.10.015 CrossRefGoogle Scholar
  132. 132.
    Karakizis PN, Pantelis DI, Dragatogiannis DA et al (2019) Study of friction stir butt welding between thin plates of AA5754 and mild steel for automotive applications. Int J Adv Manuf Technol 102:3065–3076CrossRefGoogle Scholar
  133. 133.
    Sagheer-abbasi Y, Ikramullah-Butt S, Hussain G et al (2019) Optimization of parameters for micro friction stir welding of aluminum 5052 using Taguchi technique. Int J Adv Manuf Technol 102:369–378CrossRefGoogle Scholar
  134. 134.
    Ramulu M, Edwards PD, Sanders DG et al (2010) Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti – 6Al – 4V butt joints. Mater Des 31:3056–3061.  https://doi.org/10.1016/j.matdes.2010.01.023 CrossRefGoogle Scholar
  135. 135.
    Bozkurt Y (2012) The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater Des 35:440–445.  https://doi.org/10.1016/j.matdes.2011.09.008 CrossRefGoogle Scholar
  136. 136.
    Fujii H, Cui L, Maeda M, Nogi K (2006) Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng A 419:25–31.  https://doi.org/10.1016/j.msea.2005.11.045 CrossRefGoogle Scholar
  137. 137.
    Cavaliere P, Campanile G, Panella F, Squillace A (2006) Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding. J Mater Process Technol 180:263–270.  https://doi.org/10.1016/j.jmatprotec.2006.06.015 CrossRefGoogle Scholar
  138. 138.
    Aydin H, Bayram A, Uguz A, Akay KS (2009) Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state RS. Mater Des 30:2211–2221.  https://doi.org/10.1016/j.matdes.2008.08.034 CrossRefGoogle Scholar
  139. 139.
    Singh RKR, Sharma C, Dwivedi DK et al (2011) The microstructure and mechanical properties of friction stir welded Al – Zn – Mg alloy in as welded and heat treated conditions. Mater Des 32:682–687.  https://doi.org/10.1016/j.matdes.2010.08.001 CrossRefGoogle Scholar
  140. 140.
    Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42:1549–1557CrossRefGoogle Scholar
  141. 141.
    Yi D, Onuma T, Mironov S et al (2017) Evaluation of heat input during friction stir welding of aluminium alloys. Sci Technol Weld Join 22:41–46.  https://doi.org/10.1080/13621718.2016.1183079 CrossRefGoogle Scholar
  142. 142.
    Feng Z, Wang XL, David SA, Sklad PS (2007) Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Sci Technol Weld Join 12:348–356CrossRefGoogle Scholar
  143. 143.
    Mahoney MW, Rhodes CG, Flintoff JG et al (1998) Properties of friction-stir-welded 7075 T651 aluminium. Metall Mater Trans A 29:1955–1964CrossRefGoogle Scholar
  144. 144.
    Russell MJ, Nunn ME, Martin J (2008) Recent developments in the stationary shoulder FSWof titanium alloys. In: 7th international symposium on friction stir weldingGoogle Scholar
  145. 145.
    Xu RZ, Cui SL, Li H et al (2019) Improving hook characterization of friction stir lap welded Al alloy joint using a two-section stepped friction pin. Int J Adv Manuf Technol 102:3739–3746CrossRefGoogle Scholar
  146. 146.
    Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM InternationalGoogle Scholar
  147. 147.
    Fuller C. (2007) Friction stir tooling. ASM InternationalGoogle Scholar
  148. 148.
    Thomas WM (1996) Friction stir welding, UK patent application 2. 306–366Google Scholar
  149. 149.
    Lorrain O, Favier V, Zahrouni H, Lawrjaniec D (2010) Understanding the material flow path of friction stir welding process using unthreaded tools. J Mater Process Technol 210:603–609CrossRefGoogle Scholar
  150. 150.
    Reza-E-Rabby MD, Tang W, Reynolds AP (2017) Effects of thread interruptions on tool pins in friction stir welding of AA6061. Sci Technol Weld Join:1–11.  https://doi.org/10.1080/13621718.2017.1341363 CrossRefGoogle Scholar
  151. 151.
    Khodaverdizadeh H, Heidarzadeh A, Saeid T (2013) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des 45:265–270CrossRefGoogle Scholar
  152. 152.
    Buffa G, Campanile G, Fratini L, Prisco A (2009) Friction stir welding of lap joints: influence of process parameters on the metallurgical and mechanical properties. Mater Sci Eng A 519:19–26.  https://doi.org/10.1016/j.msea.2009.04.046 CrossRefGoogle Scholar
  153. 153.
    Çam G, Mistikoglu S (2014) Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform 23:1936–1953CrossRefGoogle Scholar
  154. 154.
    Shah LH, Walbridge S, Gerlich A (2019) Tool eccentricity in friction stir welding: a comprehensive review. Sci Technol Weld Join.  https://doi.org/10.1080/13621718.2019.1573010 CrossRefGoogle Scholar
  155. 155.
    Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459:7–18CrossRefGoogle Scholar
  156. 156.
    Li H, Gao J, Li Q et al (2019) Effect of friction stir welding tool design on welding thermal efficiency. Sci Technol Weld Join 24:156–162.  https://doi.org/10.1080/13621718.2018.1495868 CrossRefGoogle Scholar
  157. 157.
    Mira-Aguiar T, Verdera D, Leitão C, Rodrigues DM (2016) Tool assisted friction welding: a FSW related technique for the linear lap welding of very thin steel plates. J Mater Process Technol 238:73–80CrossRefGoogle Scholar
  158. 158.
    Andrade DG, Leitão C, Rodrigues DM (2018) Properties of lap welds in low carbon galvanized steel produced by tool assisted friction welding. J Mater Process Technol 260:77–86.  https://doi.org/10.1016/j.jmatprotec.2018.05.018 CrossRefGoogle Scholar
  159. 159.
    Tiwari A, Pankaj P, Biswas P et al (2019) Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints. Int J Adv Manuf Technol 103:1989–2005CrossRefGoogle Scholar
  160. 160.
    Lemos GVB, Hanke S, dos Santos JF et al (2017) Progress in friction stir welding of Ni alloys. Sci Technol Weld Join 22:643–657.  https://doi.org/10.1080/13621718.2017.1288953 CrossRefGoogle Scholar
  161. 161.
    Prado RA, Murr LE, Soto KF, McClure JC (2003) Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC. Mater Sci Eng A 349:156–165CrossRefGoogle Scholar
  162. 162.
    Morisada Y, Fujii H, Kanda K et al (2018) Evaluation of friction stir welding tool using wettability. Weld Int 32:469–474.  https://doi.org/10.1080/01431161.2017.1346885 CrossRefGoogle Scholar
  163. 163.
    Ramulu M, Labossiere P, Greenwell T (2010) Elastic–plastic stress/strain response of friction stir-welded titanium butt joints using Moiré interferometry. Opt Lasers Eng 48:385–392.  https://doi.org/10.1016/j.optlaseng.2009.10.003 CrossRefGoogle Scholar
  164. 164.
    Ericsson M, Sandstrom R (2003) Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. Int J Fatigue 25:1379–1387.  https://doi.org/10.1016/S0142-1123(03)00059-8 CrossRefGoogle Scholar
  165. 165.
    He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66.  https://doi.org/10.1016/j.pmatsci.2014.03.003 CrossRefGoogle Scholar
  166. 166.
    Gibson BT, Lammlein DH, Prater TJ et al (2014) Friction stir welding: process, automation, and control. J Manuf Process 16:56–73.  https://doi.org/10.1016/j.jmapro.2013.04.002 CrossRefGoogle Scholar
  167. 167.
    Lammlein DH, Gibson BT, DeLapp DR et al (2012) The friction stir welding of small-diameter pipe: an experimental and numerical proof of concept for automation and manufacturing. J Eng Manuf 226:383–398CrossRefGoogle Scholar
  168. 168.
    Mendez PF, Tello KE, Lienert TJ (2010) Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding. Acta Mater 58:6012–6026.  https://doi.org/10.1016/j.actamat.2010.07.019 CrossRefGoogle Scholar
  169. 169.
    Reynolds AP, Tang W, Khandkar Z et al (2005) Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds. Sci Technol Weld Join 10:190–199CrossRefGoogle Scholar
  170. 170.
    Askari A, Silling S, London B, Mahoney M (2001) Modeling and analysis of friction stir welding processing. In: Friction stir welding and processing. pp 43–54Google Scholar
  171. 171.
    Tutunchilar S, Haghpanahi M, Besharati Givi MK et al (2012) Simulation of material flow in friction stir processing of a cast Al–Si alloy. Mater Des 40:415–426CrossRefGoogle Scholar
  172. 172.
    Feulvarch E, Roux JC, Bergheau JM (2013) A simple and robust moving mesh technique for the finite element simulation of friction stir welding. J Comput Appl Math 246:269–277MathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    Pan WX, Li DS, Tartakovsky AM et al (2013) A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204CrossRefGoogle Scholar
  174. 174.
    Xiao Y, Zhan H, Gu Y, Li Q (2017) Modeling heat transfer during friction stir welding using a meshless particle method. Int J Heat Mass Transf 104:288–300.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.047 CrossRefGoogle Scholar
  175. 175.
    Pan T, Joaquin A, Wilkosz DE, et al Spot friction welding for sheet aluminum joiningGoogle Scholar
  176. 176.
    Hirasawa S, Badarinarayan H, Okamoto K, Tomimura T (2010) Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J Mater Process Technol 210:1455–1463.  https://doi.org/10.1016/j.jmatprotec.2010.04.003 CrossRefGoogle Scholar
  177. 177.
    Feng Z, Santella ML, David SA, et al (2005) Friction stir spot welding of advanced highstrength steels – a feasibility study. SAE Tech Pap.  https://doi.org/10.4271/2005-01-1248.
  178. 178.
    Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49:814–823.  https://doi.org/10.1016/j.ijmachtools.2009.06.001 CrossRefGoogle Scholar
  179. 179.
    Rana PK, Narayanan RG, Kailas SV (2019) Friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets at varying plunge speeds. Thin-Walled Struct 138:415–429.  https://doi.org/10.1016/j.tws.2019.02.016 CrossRefGoogle Scholar
  180. 180.
    Rana PK, Narayanan RG, Kailas SV (2018) Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J Mater Process Technol 252:511–523.  https://doi.org/10.1016/j.jmatprotec.2017.10.016 CrossRefGoogle Scholar
  181. 181.
    Solanki KN, Jordon JB, Whittington W et al (2012) Structure-property relationships and residual stress quantification of a friction stir spot welded magnesium alloy. Scr Mater 66:797–800CrossRefGoogle Scholar
  182. 182.
    Cao JY, Wang M, Kong L, Guo LJ (2016) Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J Mater Process Technol 230:254–262CrossRefGoogle Scholar
  183. 183.
    Rao HM, Jordon JB, Barkey ME et al (2013) Influence of structural integrity on fatigue behavior of friction stir spot welded AZ31 Mg alloy. Mater Sci Eng A 564:369–380CrossRefGoogle Scholar
  184. 184.
    Yin YH, Sun N, North TH, Hu SS (2010) Influence of tool design on mechanical properties of AZ31 friction stir spot welds. Sci Technol Weld Join 15:81–86.  https://doi.org/10.1179/136217109X12489665059384 CrossRefGoogle Scholar
  185. 185.
    Campanelli LC, Suhuddin UFH, Antonialli AIS et al (2013) Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds. J Mater Process Technol 213:515–521CrossRefGoogle Scholar
  186. 186.
    Rosendo T, Parra B, Tier MAD et al (2011) Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Mater Des 32:1094–1100CrossRefGoogle Scholar
  187. 187.
    Zhou L, Li GH, Zhang RX et al (2019) Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. J Alloys Compd 775:372–382.  https://doi.org/10.1016/j.jallcom.2018.10.045 CrossRefGoogle Scholar
  188. 188.
    Niroumand-Jadidi A, Kashani-Bozorg SF (2018) Microstructure and property assessment of dissimilar joints of 6061-T6 Al/dual-phase steel fabricated by friction stir spot welding. Weld World 62:751–765.  https://doi.org/10.1007/s40194-018-0602-x CrossRefGoogle Scholar
  189. 189.
    Bilici MK (2012) Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene. Mater Des 35:113–119.  https://doi.org/10.1016/j.matdes.2011.08.033 CrossRefGoogle Scholar
  190. 190.
    Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int J Mach Tools Manuf 47:2230–2236.  https://doi.org/10.1016/j.ijmachtools.2007.07.005 CrossRefGoogle Scholar
  191. 191.
    Yang Q, Mironov S, Sato YS, Okamoto K (2010) Material flow during friction stir spot welding. Mater Sci Eng A 527:4389–4398.  https://doi.org/10.1016/j.msea.2010.03.082 CrossRefGoogle Scholar
  192. 192.
    Ogawa Y, Akebono H, Tanaka K, Sugeta A (2019) Effect of welding time on fatigue properties of friction stir spot welds of Al to carbon fibre-reinforced plastic. Sci Technol Weld Join 24:235–242.  https://doi.org/10.1080/13621718.2018.1535781 CrossRefGoogle Scholar
  193. 193.
    Heydari F, Amadeh AA, Ojo OO, et al (2019) Microstructure and mechanical properties of autobody steel joined by friction stir spot welding. Sādhanā 44–73.  https://doi.org/10.1007/s12046-019-1057-5
  194. 194.
    Su P, Gerlich A, North TH, Bendzsak GJ (2006) Energy utilisation and generation during friction stir spot welding. Sci Technol Weld Join 11:163–169CrossRefGoogle Scholar
  195. 195.
    Garcia-castillo FA, García-vázquez FJ, Reyes-Valdés FA et al (2018) Microstructural evolution in Ti-6Al-4V alloy joints using the process of friction stir spot welding. Weld Int 32:570–578.  https://doi.org/10.1080/09507116.2017.1347346 CrossRefGoogle Scholar
  196. 196.
    Tozaki Y, Uematsu Y, Tojaki K (2010) A newly developed tool without probe for friction stir spot welding and its performance. J Mater Process Technol 210:844–851CrossRefGoogle Scholar
  197. 197.
    Cox CD, Gibson BT, DeLapp DR et al (2014) A method for double-sided friction stir spot welding. J Manuf Process 16:241–247.  https://doi.org/10.1016/j.jmapro.2013.10.006 CrossRefGoogle Scholar
  198. 198.
    Lyu X, Li M, Li X, Chen J (2018) Double-sided friction stir spot welding of steel and aluminum alloy sheets. Int J Adv Manuf Technol 96:2875–2884.  https://doi.org/10.1007/s00170-018-1710-x CrossRefGoogle Scholar
  199. 199.
    Chu Q, Li WY, Hou HL et al (2019) On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy. J Mater Sci Technol 35:784–789.  https://doi.org/10.1016/j.jmst.2018.10.027 CrossRefGoogle Scholar
  200. 200.
    Enami M, Farahani M, Farhang M (2019) Novel study on keyhole less friction stir spot welding of Al 2024 reinforced with alumina nanopowder. Int J Adv Manuf Technol 101:3093–3106CrossRefGoogle Scholar
  201. 201.
    Mousavizade SM, Pouranvari M (2019) Projection friction stir spot welding: a pathway to produce strong keyhole-free welds. Sci Technol Weld Join 24:256–262.  https://doi.org/10.1080/13621718.2018.1521068 CrossRefGoogle Scholar
  202. 202.
    Evans WT, Cox C, Gibson BT et al (2016) Two-sided friction stir riveting by extrusion: a process for joining dissimilar materials. J Manuf Process 23:115–121.  https://doi.org/10.1016/j.jmapro.2016.06.001 CrossRefGoogle Scholar
  203. 203.
    Yuan W, Mishra RS, Webb S et al (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mater Process Technol 211:972–977.  https://doi.org/10.1016/j.jmatprotec.2010.12.014 CrossRefGoogle Scholar
  204. 204.
    Piccini JM, Svoboda HG (2015) Effect of the tool penetration depth in friction stir spot welding (FSSW) of dissimilar aluminum alloys. Procedia Mater Sci 8:868–877.  https://doi.org/10.1016/j.mspro.2015.04.147 CrossRefGoogle Scholar
  205. 205.
    Yan Y, Shen Y, Lei H, Zhuang J (2019) Influence of welding parameters and tool geometry on the morphology and mechanical performance of ABS friction stir spot welds. Int J Adv Manuf Technol 103:2319–2330CrossRefGoogle Scholar
  206. 206.
    Sun Y, Morisada Y, Fujii H, Tsuji N (2018) Ultrafine grained structure and improved mechanical properties of low temperature friction stir spot welded 6061-T6 Al alloys. Mater Charact 135:124–133.  https://doi.org/10.1016/j.matchar.2017.11.033 CrossRefGoogle Scholar
  207. 207.
    Mironov S, Inagaki K, Sato YS, Kokawa H (2015) Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050. Metall Mater Trans A 46:783–790.  https://doi.org/10.1007/s11661-014-2651-0 CrossRefGoogle Scholar
  208. 208.
    Sha G, Tugcu K, Liao XZ et al (2014) Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Mater 63:169–179.  https://doi.org/10.1016/j.actamat.2013.10.022 CrossRefGoogle Scholar
  209. 209.
    Sakai T, Belyakov A, Kaibyshev R et al (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207.  https://doi.org/10.1016/j.pmatsci.2013.09.002 CrossRefGoogle Scholar
  210. 210.
    Bang HS, Lee WR, Hong SM et al (2018) Mechanical properties of dissimilar A356/SAPH440 joints by the friction stir spot welding and self-pierce riveting. Strength Mater 50:63–71.  https://doi.org/10.1007/s11223-018-9943-3 CrossRefGoogle Scholar
  211. 211.
    Farmanbar N, Mousavizade SM, Ezatpour HR (2019) Achieving special mechanical properties with considering dwell time of AA5052 sheets welded by a simple novel friction stir spot welding. Mar Struct 65:197–214.  https://doi.org/10.1016/j.marstruc.2019.01.010 CrossRefGoogle Scholar
  212. 212.
    Chu Q, Li WY, Yang XW et al (2018) Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy. J Mater Sci Technol 34:1739–1746.  https://doi.org/10.1016/j.jmst.2018.03.009 CrossRefGoogle Scholar
  213. 213.
    Tran VX, Pan J, Pan T (2009) Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. J Mater Process Technol 209:3724–3739CrossRefGoogle Scholar
  214. 214.
    Arul SG, Miller SF, Kruger GH et al (2008) Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy. Sci Technol Weld Join 133:629–637.  https://doi.org/10.1179/136217108X363900 CrossRefGoogle Scholar
  215. 215.
    Sarkar R, Sengupta S, Pal TK, Shome M (2015) Microstructure and mechanical properties of friction stir spot-welded IF/DP dissimilar steel joints. Metall Mater Trans A 46:5182–5200CrossRefGoogle Scholar
  216. 216.
    Badarinarayan H, Yang Q, Zhu S (2009) Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. Int J Mach Tools Manuf 49:142–148.  https://doi.org/10.1016/j.ijmachtools.2008.09.004 CrossRefGoogle Scholar
  217. 217.
    Bilici MK (2012) Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polym Lett 6:805–813.  https://doi.org/10.3144/expresspolymlett.2012.86 CrossRefGoogle Scholar
  218. 218.
    Zhou L, Zhang RX, Li GH et al (2018) Effect of pin profile on microstructure and mechanical properties of friction stir spot welded Al-Cu dissimilar metals. J Manuf Process 36:1–9.  https://doi.org/10.1016/j.jmapro.2018.09.017 CrossRefGoogle Scholar
  219. 219.
    Merzoug M, Mazari M, Berrahal L, Imad A (2010) Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Mater Des 31:3023–3028.  https://doi.org/10.1016/j.matdes.2009.12.029 CrossRefGoogle Scholar
  220. 220.
    Hsu TI, Wu LT, Tsai MH (2018) Resistance and friction stir spot welding of dual-phase (DP780)_a comparative study. Int J Adv Manuf Technol 97:2293–2299.  https://doi.org/10.1179/174329307x159801 CrossRefGoogle Scholar
  221. 221.
    Ravi Sekhar S, Chittaranjandas V, Govardhan D, Karthikeyan R (2018) Effect of tool rotational speed on friction stir spot welded Aa5052–H38 aluminum alloy. Mater Today Proc 5:5536–5543.  https://doi.org/10.1016/j.matpr.2017.12.144 CrossRefGoogle Scholar
  222. 222.
    Sun YF, Fujii H, Sato Y, Morisada Y (2019) Friction stir spot welding of SPCC low carbon steel plates at extremely low welding temperature. J Mater Sci Technol 35:733–741.  https://doi.org/10.1016/j.jmst.2018.11.011 CrossRefGoogle Scholar
  223. 223.
    Zarghani F, Mousavizade SM, Ezatpour HR, Ebrahimi GR (2018) High mechanical performance of similar Al joints produced by a novel spot friction welding technique. Vacuum 147:172–186.  https://doi.org/10.1016/j.vacuum.2017.10.035 CrossRefGoogle Scholar
  224. 224.
    Yoon SO, Kang MS, Kwon YJ et al (2012) Influences of tool plunge speed and tool plunge depth on friction spot joining of AA5454-O aluminum alloy plates with different thicknesses. Trans Nonferrous Metals Soc China 22:s629–s633.  https://doi.org/10.1016/S1003-6326(12)61776-2 CrossRefGoogle Scholar
  225. 225.
    Zhang B, Chen X, Pan KX et al (2019) Thermo-mechanical simulation using microstructure-based modeling of friction stir spot welded AA 6061-T6. J Manuf Process 37:71–81.  https://doi.org/10.1016/j.jmapro.2018.11.010 CrossRefGoogle Scholar
  226. 226.
    Fereiduni E, Movahedi M, Baghdadchi A (2018) Ultrahigh-strength friction stir spot welds of aluminium alloy obtained by Fe3O4 nanoparticles. Sci Technol Weld Join 23:63–70.  https://doi.org/10.1080/13621718.2017.1356031 CrossRefGoogle Scholar
  227. 227.
    Ibrahim IJ, Yapici GG (2019) Optimization of the intermediate layer friction stir spot welding process. Int J Adv Manuf Technol 104:993–1004CrossRefGoogle Scholar
  228. 228.
    Khan MI, Kuntz ML, Su P et al (2007) Resistance and friction stir spot welding of DP600: a comparative study. Sci Technol Weld Join 12:175–182.  https://doi.org/10.1179/174329307X159801 CrossRefGoogle Scholar
  229. 229.
    Khorrami MS, Kazeminezhad M, Kokabi AH (2014) The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum. Mater Sci Eng A 602:110–118CrossRefGoogle Scholar
  230. 230.
    Jedrasiak P, Shercliff HR (2019) Small strain finite element modelling of friction stir spot welding of Al and Mg alloys. J Mater Process Technol 263:207–222.  https://doi.org/10.1016/j.jmatprotec.2018.07.031 CrossRefGoogle Scholar
  231. 231.
    D’Urso G (2015) Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: experimental and FEM analysis. J Manuf Process 17:108–119.  https://doi.org/10.1016/j.jmapro.2014.08.004 CrossRefGoogle Scholar
  232. 232.
    Ohira H, Ma N, Hirashima T, et al (2013) Simulation of metal flow in friction spot joining process with a particle method of smoothed particle hydrodynamics. In: Proceedings of the 1st international joint symposium on joining and welding. Osaka, pp 347–351Google Scholar
  233. 233.
    Awang M, Mucino VH, Feng Z, David SA (2005) Thermo-mechanical modeling of friction stir spot welding (FSSW) process: use of an explicit adaptive meshing schemeGoogle Scholar
  234. 234.
    Atharifar H (2010) Optimum parameters design for friction stir spot welding using a genetically optimized neural network system. Proc Inst Mech Eng B J Eng Manuf 224:403–418CrossRefGoogle Scholar
  235. 235.
    Kulekci MK, Esme U, Er O, Kazancoglu Y (2011) Modeling and prediction of weld shear strength in friction stir spot welding using design of experiments and neural network. Mater Sci Eng 42:990–995Google Scholar
  236. 236.
    Bozkurt Y, Bilici MK (2014) Taguchi optimization of process parameters in friction stir spot welding of AA5754 and AA2024 alloys. Adv Mater Res 1016CrossRefGoogle Scholar
  237. 237.
    Preliminar E, De Soldas M (2009) Preliminary study on the mechanical behavior of friction spot welds. Soldag Insp São Paulo 14:238–247CrossRefGoogle Scholar
  238. 238.
    Gonçalves J, dos Santos JF, Canto LB, Amancio-Filho ST (2015) Friction spot welding of carbon fiber-reinforced polyamide 66 laminate. Mater Lett 159:506–509.  https://doi.org/10.1016/j.matlet.2015.08.036 CrossRefGoogle Scholar
  239. 239.
    Effertz PS, Infante V, Quintino L et al (2016) Fatigue life assessment of friction spot welded 7050-T76 aluminium alloy using Weibull distribution. Int J Fatigue 87:381–390.  https://doi.org/10.1016/j.ijfatigue.2016.02.030 CrossRefGoogle Scholar
  240. 240.
    Mazda CO (2003) Mazda develops world’s first aluminum joining technology using friction heat. In: Mazda Media Release. https://www2.mazda.com/en/publicity/release/archive/2003/200302/0227e.html. Accessed Sept 2019
  241. 241.
    Plaine AH, Suhuddin UFH, Alcântara NG, dos Santos JF (2016) Fatigue behavior of friction spot welds in lap shear specimens of AA5754 and Ti6Al4V alloys. Int J Fatigue 91:149–157.  https://doi.org/10.1016/j.ijfatigue.2016.06.005 CrossRefGoogle Scholar
  242. 242.
    Kawasaki Heavy Industries LTD (2018) Friction spot joining system. In: Kawasaki Heavy Ind. Ltd. http://global.kawasaki.com/. Accessed Sept 2019
  243. 243.
    Mishin Y, Herzig CHR (2000) Diffusion in the Ti–Al system. Acta Mater 48:589–623CrossRefGoogle Scholar
  244. 244.
    Plaine AH, Suhuddin UFH, Afonso CRM et al (2016) Interface formation and properties of friction spot welded joints of AA5754 and Ti6Al4V alloys. Mater Des 93:224–231.  https://doi.org/10.1016/j.matdes.2015.12.170 CrossRefGoogle Scholar
  245. 245.
    Rosendo T, Silva AAM, Tier MAD, et al (2007) Preliminary investigation on friction spot welding of alclad 2024 T3 aluminium alloy. In: Congresso Nacional de SoldagemGoogle Scholar
  246. 246.
    Oliveira PHF, Amancio-Filho ST, Dos Santos JF, Hage Jr E (2011) Influence of the tool material on the microstructure and mechanical properties of PMMA lap joints welded by friction spot. In: ANTEC 2011 PENG. Boston, Massachusetts, USAGoogle Scholar
  247. 247.
    Junior WS, Emmler T, Abetz C et al (2014) Friction spot welding of PMMA with PMMA/silica and PMMA/silica-g-PMMA nanocomposites functionalized via ATRP. Polymer (Guildf) 55:5146–5159.  https://doi.org/10.1016/j.polymer.2014.08.022 CrossRefGoogle Scholar
  248. 248.
    Rosendo TS (2009) PhD thesis. Federal University of Rio Grande do SulGoogle Scholar
  249. 249.
    Gao C, Gao R, Ma Y (2015) Microstructure and mechanical properties of friction spot welding aluminium–lithium 2A97 alloy. Mater Des 83:719–727.  https://doi.org/10.1016/j.matdes.2015.06.013 CrossRefGoogle Scholar
  250. 250.
    Parra B, Saccon VT, Alcantra NG et al (2011) An investigation on friction spot welding in AA6181-T4 alloy. Tecnol em Metal Mater e mineração 8:184–190.  https://doi.org/10.4322/tmm.2011.029 CrossRefGoogle Scholar
  251. 251.
    Suhuddin UHF, Fischer V, Kroeff F, dos Santos JF (2014) Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys. Mater Sci Eng A 590:384–389.  https://doi.org/10.1016/j.msea.2013.10.057 CrossRefGoogle Scholar
  252. 252.
    Plaine AH, Gonzalez AR, Suhuddin UFH et al (2016) Process parameter optimization in friction spot welding of AA5754 and Ti6Al4V dissimilar joints using response surface methodology. Int J Adv Manuf Technol 85:1575–1583.  https://doi.org/10.1007/s00170-015-8055-5 CrossRefGoogle Scholar
  253. 253.
    Amancio-Filho ST, Camillo APC, Bergmann L et al (2011) Preliminary investigation of the microstructure and mechanical behaviour of 2024 aluminium alloy friction spot welds. Mater Trans 52:985–991CrossRefGoogle Scholar
  254. 254.
    Plaine AH, Gonzalez AR, Suhuddin UFH et al (2015) The optimization of friction spot welding process parameters in AA6181-T4 and Ti6Al4V dissimilar joints. Mater Des 83:36–41.  https://doi.org/10.1016/j.matdes.2015.05.082 CrossRefGoogle Scholar
  255. 255.
    Zhao Y, Wang C, Li J et al (2018) Local melting mechanism and its effects on mechanical properties of friction spot welded joint for Al-Zn-Mg-Cu alloy. J Mater Sci Technol 34:185–191.  https://doi.org/10.1016/j.jmst.2017.11.014 CrossRefGoogle Scholar
  256. 256.
    Shen Z, Ding Y, Gopkalo O et al (2018) Effects of tool design on the microstructure and mechanical properties of refill friction stir spot welding of dissimilar Al alloys. J Mater Process Technol 252:751–759.  https://doi.org/10.1016/j.jmatprotec.2017.10.034 CrossRefGoogle Scholar
  257. 257.
    Amancio-filho ST, Camillo APC, Bergmann L et al (2011) Preliminary investigation of the microstructure and mechanical behaviour of 2024 aluminium alloy friction spot welds * 1. Mater Trans 52:985–991.  https://doi.org/10.2320/matertrans.L-MZ201126 CrossRefGoogle Scholar
  258. 258.
    Amancio-filho ST, Bueno C, Santos JF et al (2011) On the feasibility of friction spot joining in magnesium / fiber-reinforced polymer composite hybrid structures. Mater Sci Eng A 528:3841–3848.  https://doi.org/10.1016/j.msea.2011.01.085 CrossRefGoogle Scholar
  259. 259.
    Andre NM, Goushegir M, Santos JF et al (2016) Friction spot joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: microstructure , mechanical strength and failure mechanisms. Nat A Compos Part B 94:197–208.  https://doi.org/10.1016/j.compositesb.2016.03.011 CrossRefGoogle Scholar
  260. 260.
    Esteves JV, Goushegir SM, dos Santos JF et al (2015) Friction spot joining of aluminum AA6181-T4 and carbon fiber-reinforced poly(phenylene sulfide): effects of process parameters on the microstructure and mechanical strength. Mater Des 66:437–445.  https://doi.org/10.1016/j.matdes.2014.06.070 CrossRefGoogle Scholar
  261. 261.
    Goushegir SM, Santos JF, Amancio-filho ST (2014) Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des 54:196–206.  https://doi.org/10.1016/j.matdes.2013.08.034 CrossRefGoogle Scholar
  262. 262.
    Goushegir SM, dos Santos JF, Amancio-Filho ST (2015) Influence of process parameters on mechanical performance and bonding area of AA2024/carbon-fiber-reinforced poly(phenylene sulfide) friction spot single lap joints. Mater Des 83:431–442.  https://doi.org/10.1016/j.matdes.2015.06.044 CrossRefGoogle Scholar
  263. 263.
    Junior WS, Handge UA, Dos Santos JF et al (2014) Feasibility study of friction spot welding of dissimilar single-lap joint between poly(methyl methacrylate) and poly(methyl methacrylate)-SiO2 nanocomposite. Mater Des 64:246–250.  https://doi.org/10.1016/j.matdes.2014.07.050 CrossRefGoogle Scholar
  264. 264.
    Huang Y, Meng X, Xie Y et al (2018) Friction spot welding of carbon fiber-reinforced polyetherimide laminate. Compos Struct 189:627–634.  https://doi.org/10.1016/j.compstruct.2018.02.004 CrossRefGoogle Scholar
  265. 265.
    André NM, Goushegir SM, dos Santos JF, et al (2014) On the microstructure and mechanical performance of friction spot joining with additional film interlayer. In: ANTEC Society of Plastic Engineers. pp 1791–1797Google Scholar
  266. 266.
    Ageorges C, Ye L (2001) Resistance welding of metal/thermoplastic composite joints. J Thermoplast Compos Mater 14:449–475.  https://doi.org/10.1106/PN74-QXKH-7XBE-XKF5 CrossRefGoogle Scholar
  267. 267.
    McKnight SH, McBride MG, Gillespie JW (1993) Joining of polypropylene and aluminum: evaluation of environmental durability. In: 25th international SAMPE technical conference. pp 26–28Google Scholar
  268. 268.
    Esteves JV, Amancio-filho ST, dos Santos JF, et al (2012) Friction spot joining of aluminum 6181-T4 and carbon fiber reinforced poly(phenylene sulfide). In: ANTEC Society of Plastic EngineersGoogle Scholar
  269. 269.
    Karami Pabandi H, Movahedi M, Kokabi AH (2017) A new refill friction spot welding process for aluminum/polymer composite hybrid structures. Compos Struct 174:59–69.  https://doi.org/10.1016/j.compstruct.2017.04.053 CrossRefGoogle Scholar
  270. 270.
    Chen K, Chen BX, Zhang SY et al (2017) Friction spot welding between porous TC4 titanium alloy and ultra high molecular weight polyethylene. Mater Des 132:178–187.  https://doi.org/10.1016/j.matdes.2017.06.071 CrossRefGoogle Scholar
  271. 271.
    Borges MF, Amancio-filho ST, dos Santos JF et al (2012) Development of computational models to predict the mechanical behavior of friction riveting joints. Comput Mater Sci 54:7–15.  https://doi.org/10.1016/j.commatsci.2011.10.031 CrossRefGoogle Scholar
  272. 272.
    Amancio-Filho, S.T., Beyer, M., Dos Santos JF (2009) Method for connecting a metallic bolt to a plastic pieceGoogle Scholar
  273. 273.
    Blaga L, Amancio-Filho ST, Dos Santos JF, Bancila R (2015) Friction riveting (FricRiveting) as a new joining technique in GFRP lightweight bridge construction. Constr Build Mater 80:167–179CrossRefGoogle Scholar
  274. 274.
    Amancio Filho ST (2011) Friction riveting: development and analysis of a new joining technique for polymer-metal multi-material structures. Weld World 55:13–24CrossRefGoogle Scholar
  275. 275.
    Amancio-Filho, S.T., Dos Santos JF (2008) FricRiveting: a new technique for joining thermoplastics to lightweight alloys. In: Proceedings of annual technical conference of theSociety of Plastic Engineers - ANTEC 2008. Milwaukee, pp 841–845Google Scholar
  276. 276.
    Altmeyer J, Suhuddin UFH, Santos JF, Amancio-filho ST (2015) Microstructure and mechanical performance of metal-composite hybrid joints produced by FricRiveting. Compos Part B 81:130–140.  https://doi.org/10.1016/j.compositesb.2015.06.015 CrossRefGoogle Scholar
  277. 277.
    Blaga L, Bancila R, dos Santos JF, Amancio-Filho ST (2013) Friction riveting of glass – fibre-reinforced polyetherimide composite and titanium grade 2 hybrid joints. Mater Des 50:825–829.  https://doi.org/10.1016/j.matdes.2013.03.061 CrossRefGoogle Scholar
  278. 278.
    Borba NZ, Blaga L, Santos JF, Amancio-filho ST (2018) Direct-friction riveting of polymer composite laminates for aircraft applications. Mater Lett 215:31–34.  https://doi.org/10.1016/j.matlet.2017.12.033 CrossRefGoogle Scholar
  279. 279.
    Rodrigues CF, Blaga LA, Santos JF et al (2014) FricRiveting of aluminum 2024-T351 and polycarbonate: temperature evolution, microstructure and mechanical performance. J Mater Process Technol 214:2029–2039.  https://doi.org/10.1016/j.jmatprotec.2013.12.018 CrossRefGoogle Scholar
  280. 280.
    Amancio-filho ST, Roeder J, Nunes SP et al (2008) Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: influence of rotation speed. Polym Degrad Stab 93:1529–1538.  https://doi.org/10.1016/j.polymdegradstab.2008.05.019 CrossRefGoogle Scholar
  281. 281.
    Altmeyer J (2015) Fundamental characteristics of friction riveted multi-material jointsGoogle Scholar
  282. 282.
    Altmeyer J, dos Santos JF, Amancio-filho ST (2014) Effect of the friction riveting process parameters on the joint formation and performance of Ti alloy / short-fibre reinforced polyether ether ketone joints. Mater Des 60:164–166CrossRefGoogle Scholar
  283. 283.
    Amancio-Filho ST (2007) Developement and analysis of a new joining technique for polymer–metal multi-materials structures. Hamburg-Harburg University of TechnologyGoogle Scholar
  284. 284.
    Gagliardi F, Conte R, Ciancio C et al (2018) Joining of thermoplastic structures by friction riveting: a mechanical and a microstructural investigation on pure and glass reinforced polyamide sheets. Compos Struct 204:268–275.  https://doi.org/10.1016/j.compstruct.2018.07.092 CrossRefGoogle Scholar
  285. 285.
    Salamati M (2017) Joining of thermosetting carbon fiber reinforced plastics by plastic deformation, MSc thesis (in Persian). Imam Khomeini International UniversityGoogle Scholar
  286. 286.
    Lin PC, Lo SM (2016) Development of friction stir clinching process for alclad 2024-T3 aluminum sheets. SAE Int J Mater Manuf 9:756–763MathSciNetCrossRefGoogle Scholar
  287. 287.
    Lin PC, Lo SM (2017) Friction stir clinching of alclad AA2024-T3 sheets. Int J Adv Manuf Technol 92:2425–2437.  https://doi.org/10.1007/s00170-017-0337-7 CrossRefGoogle Scholar
  288. 288.
    Paidar M, Oladimeji Ojo O, Moghanian A et al (2019) Modified friction stir clinching with protuberance-keyhole levelling: a process for production of welds with high strength. J Manuf Process 41:177–187.  https://doi.org/10.1016/j.jmapro.2019.03.030 CrossRefGoogle Scholar
  289. 289.
    Su ZM, Qiu QH, Lin PC (2016) Design of friction stir spot welding tools by using a novel thermal-mechanical approach. Mater 9:677–692CrossRefGoogle Scholar
  290. 290.
    Lin PC, Lo SM, Wu SP (2018) Fatigue life estimations of alclad AA2024-T3 friction stir clinch joints. Int J Fatigue 107:13–26.  https://doi.org/10.1016/j.ijfatigue.2017.10.011 CrossRefGoogle Scholar
  291. 291.
    Fratini L, Micari F, Bufa G, Ruisi VF (2010) A new fixture for FSW processes of titanium alloys. CIRP Ann - Manuf Technol 59:271–274CrossRefGoogle Scholar
  292. 292.
    Schikorra M, Pantke K, Tekkaya AE, Biermann D (2008) Re-use of AA6060, AA6082, and AA7075 aluminum turning chips by hot extrusion. In: Yang, D.Y.( Ed.), 9th ICTP 2008, international conference on technology of plasticity. pp 902–907Google Scholar
  293. 293.
    Lambiase F, Grossi V, Paoletti A (2019) Advanced mechanical characterization of friction stir welds made on polycarbonate. Int J Adv Manuf Technol 104:2089–2102CrossRefGoogle Scholar
  294. 294.
    Pérez de la Parte M, Azofra JC, Fals HDC et al (2019) A new way to predict the mechanical properties of friction stir spot welding for Al-Cu joints by energy analysis of the vibration signals. Int J Adv Manuf Technol 105:1823–1834CrossRefGoogle Scholar
  295. 295.
    Salamati M, Soltanpour M, Zajkani A, Fazli A (2019) Improvement in joint strength and material joinability in clinched joints by electromagnetically assisted clinching. J Manuf Process 41.  https://doi.org/10.1016/j.jmapro.2019.04.003 CrossRefGoogle Scholar
  296. 296.
    Babalo V, Fazli A, Soltanpour M (2018) Electro-hydraulic clinching: a novel high speed joining process. J Manuf Process 35:559–569.  https://doi.org/10.1016/j.jmapro.2018.09.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  1. 1.Advanced Forming Technology and Materials Lab, Mechanical Engineering Department, Faculty of Engineering and TechnologyImam Khomeini International UniversityQazvinIran

Personalised recommendations