Technical-economic evaluation of abrasive recycling in the suspension fine jet process chain

  • Anika SchrammEmail author
  • Florian Morczinek
  • Uwe Götze
  • Matthias Putz


Abrasive waterjet generation methods such as the conventional injection jet method and the suspension jet method have a strong influence on properties and costs of the machined products, particularly ones made of difficult-to-machine materials, e.g., ceramics. Since recycling may reduce the needed amount of materials significantly, the same holds true for recycling processes and technologies within the process chains of abrasive waterjet methods. In this paper, a methodology for integrated technical-economic evaluation of processes is presented and applied to the process technology of abrasive recycling in the suspension fine jet process chain aiming to show the technology’s technical as well as economic potential. Research and development regarding such processes and technologies may contribute to gain competitive advantages for companies as they can differentiate from competitors by offering or processing materials with distinctive properties and/or lower prices causing customer’s benefit. Consequently, it is also of great importance for companies applying waterjet cutting methods to know whether and which recycling technologies are promising from both a technical and an economic point of view. Experiments show that a significant share of the input material (abrasive particles) can be reused after recycling. The monetary appraisal reveals that technical potential results in considerably lower costs compared to the suspension jet method without recycling.


Abrasive waterjet (AWJ) Suspension jet Recycling Technical-economic evaluation 







Cutting time


Feed speed


Funding information

This work was performed as part of the research project FiberCer (grant number 100310496), supported by the European Social Fund (ESF).


  1. 1.
    Holmberg J, Berglund J, Wretland A, Beno T (2019) Evaluation of surface integrity after high energy machining with EDM, laser beam machining and abrasive water jet machining of alloy 718. Int J Adv Manuf Technol 100(5–8):1575–1591CrossRefGoogle Scholar
  2. 2.
    Waterjet Cutting Machine Market by Product Type (3D, Micro, and Robotic), Application (Glass/Metal Art, Fiberglass Cutting, Foam Product Cutting), Industry (Automotive, Machine Manufacturing, Medical Devices), and Geography - Global Forecast to 2023,
  3. 3.
    Uhlmann E, Bilz M, Manthel M, Motschmann S (2012) Marktstudie Strahlverfahren 2012, Fraunhofer IPKGoogle Scholar
  4. 4.
    Manthel M (2012) Noch Optimierungspotenzial beim Wasserstrahlschneiden. Technische Rundschau 10:30–33Google Scholar
  5. 5.
    Summers DA (1995) Waterjetting technology. LondonGoogle Scholar
  6. 6.
    Brandt C, Louis H, Ohlsen J, Tebbing G et al. (1997) Bearbeitung mit Wasserabrasivstrahlen. Jahrbuch Schweißtechnik, Deutscher Verlag für Schweißtechnik, Düsseldorf: 94–104Google Scholar
  7. 7.
    Henning A (2008) Modellierung der Schnittgeometrie beim Schneiden mit dem Wasserabrasivstrahl. HeimsheimGoogle Scholar
  8. 8.
    Ohlsen J (1997) Recycling von Feststoffen beim Wasserabrasivstrahlverfahren (Als Ms. gedr.). DüsseldorfGoogle Scholar
  9. 9.
    Blickwedel H (1990) Erzeugung und Wirkung von Hochdruck-Abrasivstrahlen (Als Ms. gedr.). Düsseldorf: VDI-VerlGoogle Scholar
  10. 10.
    Louis H, Pude F, von Rad C, Versemann R (2007) Abrasive water suspension jet technology – fundamentals, application and developments. Weld World 51(9/10):11–16CrossRefGoogle Scholar
  11. 11.
    Molitoris M, Pitel J, Hošovský A, Tóthová M, Židek K (2016) A review of research on water jet with slurry injection. Procedia Eng 149:333–339CrossRefGoogle Scholar
  12. 12.
    Liwszyc D, Liwszyc AJ, Liwszyc JP, Perec A (2011) Abrasive slurry injection jet (as-Ij) for Cnc cutting system. WJTA-IMCA Conference and ExpoGoogle Scholar
  13. 13.
    Zeleňák M, Foldyna J, Martinec P, Cárach J, Gurková L, Nováková D (2015) Measurement and analysis of abrasive particles velocities in AWJ. Proceedings of the 4th international conference on water jetting technology. Velké LosinyGoogle Scholar
  14. 14.
    Zeleňák M, Foldyna J, Linde M, Pude F, Rentsch T, Fernolendt J, Poort HU (2016) Measurement and analysis of abrasive particle velocities in AWSJ. Procedia Eng 149:77–86CrossRefGoogle Scholar
  15. 15.
    Putz M, Dix M, Morczinek F, Dittrich M (2018) Suspension technology for abrasive waterjet (AWJ) cutting of ceramics. Procedia CIRP 8th HPC 2018 – conference on high performance cutting. 77:367-370CrossRefGoogle Scholar
  16. 16.
    Perec A (2017) Disintegration and recycling possibility of selected abrasives for water jet cutting. DYNA. 84(203):249–256CrossRefGoogle Scholar
  17. 17.
    Kretschmer M, Aust E (1999) Recycling von Abrasivmittel und Prozesswasser in der Wasserabrasivstrahl-Technik. CIT 71:401–406Google Scholar
  18. 18.
    Kantha Babu M, Krishnaiah Chetty OV (2003) A study on recycling of abrasives in abrasive water jet machining. Wear. 254:763–773CrossRefGoogle Scholar
  19. 19.
    Pi VN (2008) Performance enhancement of abrasive waterjet cutting. RotterdamGoogle Scholar
  20. 20.
    Herold F, Schmidt A, Frint P, Götze U, Wagner MF-X (2018) Technical-economic evaluation of severe plastic deformation processing technologies–methodology and use case of lever-arm-shaped aircraft lightweight components. Int J Adv Manuf Technol 94(9–12):3619–3632CrossRefGoogle Scholar
  21. 21.
    Reinhart G, Müller S, Lau C (2007) Konfiguration und Bewertung von Prozessketten. Integrierte Konfiguration und ganzheitliche Bewertung von Technologieketten in der Produktionsplanung wt online 97:255–261Google Scholar
  22. 22.
    Pachow-Frauenhofer J, Wagner C, Nyhuis P (2009) Erweiterte Prozesskettenbewertung am Beispiel eines kombinierten Laserverfahrens. ZWF 104:617–622CrossRefGoogle Scholar
  23. 23.
    Schubert A, Götze U, Hackert-Oschätzchen M, Lehnert N, Herold F, Meichsner G, Schmidt A (2016) Evaluation of the technical-economic potential of particle-reinforced aluminium matrix composites and electrochemical machining. In: Lampke T, Wagner G, Wagner MF-X (Eds.) Tagungsband zum 18. Werkstofftechnischen Kolloquium, 10. Und 11. März 2016 in Chemnitz, Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen. 59:600-611CrossRefGoogle Scholar
  24. 24.
    Götze U, Koriath H-J, Kolesnikov A, Lindner R, Paetzold J (2012) Integrated methodology for the evaluation of the energy- and cost-effectiveness of machine tools. CIRP J Manuf Sci Technol 5:151–163CrossRefGoogle Scholar
  25. 25.
    Götze U, Hache B, Schmidt A, Weber T (2011) Methodik zur kostenorientierten Bewertung von Prozessketten der Werkstoffverarbeitung. Mater Werkst 7(42):647–657CrossRefGoogle Scholar
  26. 26.
    Götze U, Northcott D, Schuster P (2015) Investment Appraisal. Methods and Models. Berlin et al. Google Scholar
  27. 27.
    Neugebauer R, Götze U (2014) Energetisch-wirtschaftliche Bilanzierung und Bewertung - Herausforderungen und Erkenntnisse. In: Neugebauer R, Götze U, Drossel WG (Hrsg.) Energetisch-wirtschaftliche Bilanzierung - Diskussion der Ergebnisse des Spitzentechnologieclusters eniPROD: 3. Methodenband der Querschnittsarbeitsgruppe “Energetisch-wirtschaftliche Bilanzierung” des Spitzentechnologieclusters eniPROD, Auerbach 2014, 1–9Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Anika Schramm
    • 1
    Email author
  • Florian Morczinek
    • 2
  • Uwe Götze
    • 1
  • Matthias Putz
    • 2
  1. 1.Faculty of Economics and Business Administration, Professorship of Management Accounting and ControlTechnische Universität ChemnitzChemnitzGermany
  2. 2.Institute for Machine Tools and Production Processes (IWP)Technische Universität ChemnitzChemnitzGermany

Personalised recommendations