Advertisement

Effect of process parameters on chip formation during vibration-assisted drilling of Ti6Al4V

  • R. HusseinEmail author
  • A. Sadek
  • M. A. Elbestawi
  • M.H. Attia
ORIGINAL ARTICLE
  • 40 Downloads

Abstract

Vibration-assisted drilling (VAD) of Ti6Al4V is typically used in the aerospace industry to enhance the performance of the machining process. A mix of continuous and saw-tooth chip formation is associated with VAD of Ti6Al4V. In this paper, a comprehensive experimental study is developed to examine the effect of process parameters on the dominant chip formation mechanisms and the associated effects on the thrust forces and machined surface finish. The results indicate a significant change of the chips free surface produced by VAD. The kinematics of VAD showed a direct relation between the VAD amplitude and the effective rake angle. In agreement with the theory of saw-tooth formation due to cyclic crack formation, the scanning electron microscopy (SEM) examination showed a gross crack (GC) and micro crack (MC) along the shear plane. The GC increased from 20 μm for conventional drilling to 224 μm for VAD at the highest amplitude. Moreover, increasing the VAD amplitude to 160 μm showed an obvious enhancement of the machined surface finish. In addition, the study presents the influence of VAD on the tool wear mechanisms through the composition analysis of the chips machined surface using Energy Dispersion X-ray Spectroscopy (EDS).

Keywords

Low-frequency vibration-assisted drilling Ti6Al4V material Advanced machining Crack Chip formation Chip morphology 

Abbreviations

VAD

Vibration-assisted drilling

LF-VAD

Low-frequency vibration-assisted drilling

CD

Conventional drilling

ASB

Adiabatic shear band

SB

Shear band

WC

Tungsten carbide

SD

Segment degree

GC

Gross crack

MC

Micro crack

Notations

N

Rotational speed [rpm]

F

Feed rate [mm/rev]

Am

Modulation amplitude [mm]

F

Frequency [Hz]

Wf

Modulation frequency [oscillation/rev]

hmax

Maximum saw-tooth height [μm]

hmin

Minimum saw-tooth height [μm]

Lc

Deformed chip length [μm]

Sd

Sliding distance [μm]

Z

Axial cutting edge position [mm]

Zk(γ)

Maximum height of the previous rotation [mm]

γ

Rake angle [°]

γ'

Effective rake angle [°]

ƞ

Resultant cutting force direction [°]

Vc

Primary cutting speed [m/s]

Vf

Dynamic feed speed [m/s]

Notes

References

  1. 1.
    Park K-H, Beal A, Kwon P, Lantrip J (2011) Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools. Wear 271:2826–2835CrossRefGoogle Scholar
  2. 2.
    Dornfeld D, Kim J, Dechow H, Hewson J, Chen L (1999) Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Annals-Manufacturing Technology 48:73–76CrossRefGoogle Scholar
  3. 3.
    Li Z, Zhang D, Jiang X, Qin W, Geng D (2017) Study on rotary ultrasonic-assisted drilling of titanium alloys (Ti6Al4V) using 8-facet drill under no cooling condition. Int J Adv Manuf Technol 90:3249–3264CrossRefGoogle Scholar
  4. 4.
    Cantero JL, Tardío MM, Canteli JA, Marcos M, Miguélez MH (2005) Dry drilling of alloy Ti–6Al–4V. Int J Mach Tools Manuf 45:1246–1255 2005/09/01/CrossRefGoogle Scholar
  5. 5.
    Przestacki D, Majchrowski R, Marciniak-Podsadna L (2016) Experimental research of surface roughness and surface texture after laser cladding. Appl Surf Sci 388:420–423CrossRefGoogle Scholar
  6. 6.
    Przestacki D, Chwalczuk T, Wojciechowski S (2017) The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers. Int J Adv Manuf Technol 91:3887–3898CrossRefGoogle Scholar
  7. 7.
    Bartkowska A, Pertek A, Popławski M, Bartkowski D, Przestacki D, Miklaszewski A (2015) Effect of laser modification of B–Ni complex layer on wear resistance and microhardness. Opt Laser Technol 72:116–124CrossRefGoogle Scholar
  8. 8.
    Chang SS, Bone GM (2005) Burr size reduction in drilling by ultrasonic assistance. Robot Comput Integr Manuf 21:442–450CrossRefGoogle Scholar
  9. 9.
    Hussein R, Sadek A, Elbestawi MA, Attia MH (2019) Surface and microstructure characterization of low-frequency vibration-assisted drilling of Ti6Al4V. Int J Adv Manuf Technol 103:1443–1457CrossRefGoogle Scholar
  10. 10.
    Pereira RBD, Branda LC, de Paiva AP, Ferreira JR, Davim JP (2017) A review of helical milling process. Int J Mach Tools Manuf 120:27–48 2017/09/01/CrossRefGoogle Scholar
  11. 11.
    M’Saoubi R, Axinte D, Soo SL, Nobel C, Attia H, Kappmeyer G et al (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann 64:557–580CrossRefGoogle Scholar
  12. 12.
    Pecat O, Meyer I (2013). Low frequency vibration assisted drilling of aluminium alloys. Adv Mater Res 769:131-138.CrossRefGoogle Scholar
  13. 13.
    Hussein R, Sadek A, Elbestawi MA, Attia M (2018) Low-frequency vibration-assisted drilling of hybrid CFRP/Ti6Al4V stacked material. Int J Adv Manuf Technol 98:2801–2817CrossRefGoogle Scholar
  14. 14.
    Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34CrossRefGoogle Scholar
  15. 15.
    Komanduri R, Von Turkovich B (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188CrossRefGoogle Scholar
  16. 16.
    Vyas A, Shaw M (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121:163–172CrossRefGoogle Scholar
  17. 17.
    Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int J Mach Tools Manuf 41:1055–1070CrossRefGoogle Scholar
  18. 18.
    Choudhury I, El-Baradie M (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77:278–284CrossRefGoogle Scholar
  19. 19.
    Barry J, Byrne G (2001) Study on acoustic emission in machining hardened steels Part 1: acoustic emission during saw-tooth chip formation. Proc IMechE B J Eng Manuf 215:1549–1559CrossRefGoogle Scholar
  20. 20.
    Elbestawi M, Srivastava A, El-Wardany T (1996) A model for chip formation during machining of hardened steel. CIRP Ann 45:71–76CrossRefGoogle Scholar
  21. 21.
    El-Wardany T, Kishawy H, Elbestawi M (2000) Surface integrity of die material in high speed hard machining, Part 1: Micrographical analysis. J Manuf Sci Eng 122:620–631CrossRefGoogle Scholar
  22. 22.
    Nakayama K (1977) On the formation of “saw-toothed chip” in metal cutting. J Japan Soc Prec Eng 43:117–122Google Scholar
  23. 23.
    E. A. H. Kishawy1998, Chip formation and surface integrity in high speed machining of hardened steel.Google Scholar
  24. 24.
    Shaw MC, Cookson J (2005) Metal cutting principles vol. 2. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Recht R (1964) Catastrophic thermoplastic shear. J Appl Mech 31:189–193CrossRefGoogle Scholar
  26. 26.
    Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater Sci Eng A 472:115–124CrossRefGoogle Scholar
  27. 27.
    Wan Z, Zhu Y, Liu H, Tang Y (2012) Microstructure evolution of adiabatic shear bands and mechanisms of saw-tooth chip formation in machining Ti6Al4V. Mater Sci Eng A 531:155–163CrossRefGoogle Scholar
  28. 28.
    Sun S, Brandt M, Dargusch MS (2017) Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 1: effect of gradual tool wear evolution. Proc IMechE B J Eng Manuf 231:1559–1574CrossRefGoogle Scholar
  29. 29.
    Sih, GC (1974) Surface layer energy and strain energy density for a blunted crack or notch, Prospect of Fracture Mechanics, edited by GC Sih, HC van Elst and D Broek. pp. 85–102Google Scholar
  30. 30.
    Iqbal S, Mativenga P, Sheikh M (2009) A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds. Int J Adv Manuf Technol 42:30CrossRefGoogle Scholar
  31. 31.
    Bermingham M, Kirsch J, Sun S, Palanisamy S, Dargusch M (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51:500–511CrossRefGoogle Scholar
  32. 32.
    Bayoumi A, Xie J (1995) Some metallurgical aspects of chip formation in cutting Ti-6 wt.% Al-4 wt.% V alloy. Mater Sci Eng A 190:173–180CrossRefGoogle Scholar
  33. 33.
    Sánchez Y, Trujillo F, Bermudo Gamboa C, Sevilla L (2018) Experimental parametric relationships for chip geometry in dry machining of the Ti6Al4V alloy. Materials (Basel) 11:1260CrossRefGoogle Scholar
  34. 34.
    Daymi A, Boujelbene M, Salem SB, Sassi BH, Torbaty S (2009) Effect of the cutting speed on the chip morphology and the cutting forces. Archives of Computational Materials Science and Surface Engineering 1:77–83Google Scholar
  35. 35.
    Davies MA, Chou Y, Evans CJ (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. CIRP Ann 45:77–82CrossRefGoogle Scholar
  36. 36.
    Yang H, Chen Y, Xu J, Ladonne M, Lonfier J, Fu Y (2019) Tool wear mechanism in low-frequency vibration–assisted drilling of CFRP/Ti stacks and its individual layer. Int J Adv Manuf Technol 104:1–13CrossRefGoogle Scholar
  37. 37.
    A. Sadek, Vibration assisted drilling of multidirectional fiber reinforced polymer laminates, Ph.D. Thesis, McGill University Libraries, 2014.Google Scholar
  38. 38.
    Zhao W, Gong L, Ren F, Li L, Xu Q, Khan AM (2018) Experimental study on chip deformation of Ti-6Al-4V titanium alloy in cryogenic cutting. Int J Adv Manuf Technol 96:4021–4027CrossRefGoogle Scholar
  39. 39.
    Brinksmeier E, Pecat O, Rentsch R (2015) Quantitative analysis of chip extraction in drilling of Ti 6 Al 4V. CIRP Annals-Manufacturing Technology 64:93–96CrossRefGoogle Scholar
  40. 40.
    Sun S, Brandt M, Dargusch M (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568CrossRefGoogle Scholar
  41. 41.
    Dearnley P, Grearson A (1986) Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318. Mater Sci Technol 2:47–58CrossRefGoogle Scholar
  42. 42.
    Hartung PD, Kramer B, Von Turkovich B (1982) Tool wear in titanium machining. CIRP Ann 31:75–80CrossRefGoogle Scholar
  43. 43.
    Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice. CRC press, Boca RatonCrossRefGoogle Scholar
  44. 44.
    Santhanam A, Tierney P, Hunt J (1990) Cemented carbides, ASM International, Metals Handbook. Tenth 2:950–977Google Scholar
  45. 45.
    Sun S, Brandt M, Dargusch MS (2017) Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 2: effect of tool failure modes. Proc IMechE B J Eng Manuf 231:1575–1586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Aerospace ManufacturingNational Research Council CanadaQCCanada

Personalised recommendations