Advertisement

Simplified plasma channel formation model for the electrical discharge machining process

  • Agustín Márquez EscobarEmail author
  • Dirk F. de Lange
  • Hugo I. Medellín Castillo
ORIGINAL ARTICLE
  • 30 Downloads

Abstract

Electrical discharge machining (EDM) is a controlled metal-removal process used to remove metal by means of electric spark erosion. In this process, a high voltage is applied between two electrodes and the breakdown of the dielectric is initiated by moving the electrode towards the work piece. This movement increases the electric field in the gap until it reaches the breakdown value. When the breakdown occurs, the voltage falls and the current rises abruptly. The presence of a current is possible at this stage because the dielectric has been ionized and a plasma channel (the bubble) has been created between the electrodes. The pre-breakdown phase in the dielectric is characterized by the generation of numerous small bubbles that promote the breakdown process. In this paper a new model for the formation of the plasma channel (bubble) is proposed. This model considers a mixture gas/steam inside the bubble, the shell of the bubble (if any), and the fluid surrounding the bubble. The gas is modeled as ideal and the bubble is initially modeled only as a cavity within the fluid. It is assumed that the bubble is cylindrically symmetric and that the bubble oscillations preserve this symmetry. This assumption is made for the case of a single bubble far from any boundaries, and in a low amplitude-driving field. In these models the center point of the bubble remains stationary at the origin because of the cylindrical symmetry about the origin. The proposed model is evaluated using experimental data and existing models.

Keywords

Electrical discharge machining Model plasma channel (the bubble) Cylindrical symmetry Rayleigh-Plesset equation 

Notes

References

  1. 1.
    DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I A simple cathode erosion model. J Appl Phys 66(9):4095–4103CrossRefGoogle Scholar
  2. 2.
    Van Dijck FS, Dutre WL (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. 7: 899-911Google Scholar
  3. 3.
    Van Dijck FS, Snoeys R (1971) Investigation of electro discharge machining operations by means of thermo-mathematical model. 20 (1): 35–37Google Scholar
  4. 4.
    Beck VJ (1981) Transient temperatures in a semi-infinite cylinder heated by a disk heat source. Int J Heat Mass Transf 24(10):1631–1640CrossRefGoogle Scholar
  5. 5.
    Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modelling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40(3):316–323CrossRefGoogle Scholar
  6. 6.
    Joshi SN, Pande SS (2010) Thermo-physical modelling of die-sinking EDM process. 12: 45-56CrossRefGoogle Scholar
  7. 7.
    Lauwers B, Rajurkar KP, Schumacher BM, Kunieda M (2005) Advancing EDM through fundamental insight into the process. CIRP Manufacturing technology 54(2):64–87CrossRefGoogle Scholar
  8. 8.
    Boothroyd GG (2006) Fundamentals of machining and machine tools. Boca Raton. Third ed. CRC/Taylor & FrancisGoogle Scholar
  9. 9.
    Griem HR (1964) Plasma Spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Murphy AB, Farmer AJD, Haidar J (1992) Laser-scattering measurement of temperature profiles of a free-burning arc. Appl Phys Lett 60:1304–1306CrossRefGoogle Scholar
  11. 11.
    Murphy AB (2002) Electron heating in the measurement of electron temperature by Thomson scattering: are thermal plasmas thermal? Phys Rev Lett 89:25–50CrossRefGoogle Scholar
  12. 12.
    Gregori G, Kortshagen U, Heberlein J, Pfender E (2002) Analysis of Thomson scattered light from an arc plasma jet. Phys. Rev. E.65Google Scholar
  13. 13.
    Murphy AB (2004) Thomson scattering diagnostics of thermal plasmas: laser heating and the existence of local thermodynamic equilibrium. Phys Rev E 69Google Scholar
  14. 14.
    Dzierzega K, Zawadzki W, Pokrzywka B, Pellerin S (2006) Experimental investigations of plasma perturbation in Thomson scattering applied to thermal plasma diagnostics. Phys Rev E 74Google Scholar
  15. 15.
    Haidar J (1999) Non-equilibrium modelling of transferred arcs. J Phys D Appl Phys 32:263–272CrossRefGoogle Scholar
  16. 16.
    Jenista J, Heberlein JVR, Pfender E (1997) Numerical model of the anode region of high-current electric arcs IEEE Trans. Plasma Sci 25:883–890CrossRefGoogle Scholar
  17. 17.
    Snyder SC, Murphy AB, Hofeldt DL, Reynolds LD (1995) Diffusion of atomic hydrogen in an atmospheric-pressure free-burning arc discharge. Phys Rev E 52:2999–3009CrossRefGoogle Scholar
  18. 18.
    Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41:18–30CrossRefGoogle Scholar
  19. 19.
    Cram LE, Poladian L, Roumeliotis G (1988) Departures from equilibrium in a free-burning argon arc. J Phys D Appl Phys 21:418–425CrossRefGoogle Scholar
  20. 20.
    Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40:1–23CrossRefGoogle Scholar
  21. 21.
    Nemchinsky VA, Severance R (2006) What we know and what we do not know about plasma cutting. J Phys D Appl Phys 39:423–438CrossRefGoogle Scholar
  22. 22.
    Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108CrossRefGoogle Scholar
  23. 23.
    Fritz E, Gebert W (2005) Milestones and challenges in oxygen steelmaking. Can Metall Q 44:249–260CrossRefGoogle Scholar
  24. 24.
    Saevarsdottir GA, Bakken JA, Sevastyanenko VG, Gu LP (2001) High-power AC arcs in metallurgical furnaces. High Temp Mater Process 5:21–43CrossRefGoogle Scholar
  25. 25.
    Lister GG, Lawler JE, Lapatovich WP, Godyak VA (2004) The physics of discharge lamps. Rev Mod Phys 76:541–598CrossRefGoogle Scholar
  26. 26.
    Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:20–30CrossRefGoogle Scholar
  27. 27.
    Franck CM, Seeger M (2006) Application of high current and current zero simulations of high-voltage circuit breakers. Contrib Plasma Phys 46:787–797CrossRefGoogle Scholar
  28. 28.
    Swierczynski B, Gonzalez J, Teulet P, Freton P, Gleizes A (2004) Advances in low-voltage circuit breaker modelling. J Phys D Appl Phys 37:595–609CrossRefGoogle Scholar
  29. 29.
    Ostrikov K, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241CrossRefGoogle Scholar
  30. 30.
    Gonzalez-Aguilar J, Moreno M, Fulcheri L (2007) Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. J Phys D Appl Phys 40:2361–2374CrossRefGoogle Scholar
  31. 31.
    Capitelli M (2009) Thermodynamics and transport properties of thermal plasmas: the role of electronic excitation. J Phys D Appl Phys 42:194–205CrossRefGoogle Scholar
  32. 32.
    Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:153–183CrossRefGoogle Scholar
  33. 33.
    Murphy AB, Boulos MI, Colombo V, Fauchais P, Ghedini E, Gleizes A, Mostaghimi J, Proulx P, Schram DC (2008) Advanced thermal plasma modelling High Temp. Mater Process 12:255–336Google Scholar
  34. 34.
    Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2008) Understanding plasma fluid dynamics inside plasma torches through advanced modeling. IEEE Trans Plasma Sci 36:389–402CrossRefGoogle Scholar
  35. 35.
    Murphy AB, McAllister T (1998) Destruction of ozone-depleting substances in a thermal plasma reactor. Appl Phys Lett 73:459–461CrossRefGoogle Scholar
  36. 36.
    Murphy AB, McAllister T (2001) Modeling of the physics and chemistry of thermal plasma waste destruction. Phys Plasmas 8:2565–2571CrossRefGoogle Scholar
  37. 37.
    Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nano particles fabricated by inductively coupled thermal plasmas J. Phys D Appl Phys 40:2407–2419CrossRefGoogle Scholar
  38. 38.
    Snoey R, Van Dijck F (1973) Plasma channel diameter growth affects stock removal in EDM. Annals of the CIRP 21(1):39–41Google Scholar
  39. 39.
    Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process III. The variable mass, cylindrical plasma mode. J Appl Phys 73(11):7900–7910CrossRefGoogle Scholar
  40. 40.
    Karlitskaya N (2011) Laser-induced transfer of micro components. Laser die transferGoogle Scholar
  41. 41.
    Escobar AM, de Lange DF, Medellín Castillo HI (2016) Comparative analysis and evaluation of thermal models of electro discharge machining. Int J Adv Manuf TechnolGoogle Scholar
  42. 42.
    Das S, Klotz M, Klocke F (2003) EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J Mater Process Technol 142:434–451CrossRefGoogle Scholar
  43. 43.
    Schulze HP, Herms R, Juhr H, Schactzing W, Wollenberg G (2004) Comparison of measured and simulated crater morphology for EDM. J Mater Process Technol 149:319–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Agustín Márquez Escobar
    • 1
    • 2
    Email author
  • Dirk F. de Lange
    • 1
  • Hugo I. Medellín Castillo
    • 1
  1. 1.Facultad de Ingeniería, Universidad Autónoma de San Luis PotosíSan Luis PotosiMéxico
  2. 2.División de Estudios de Postgrado e InvestigaciónInstituto Tecnológico de San Luis PotosíSan Luis PotosiMéxico

Personalised recommendations