Advertisement

Optimizing boundary conditions for thermal analysis of the spindle system using dynamic metamodel assisted differential evolution method

  • Feng TanEmail author
  • Congying Deng
  • Haiqiong Xie
  • Guofu Yin
ORIGINAL ARTICLE
  • 92 Downloads

Abstract

Contributing up to 40~70% of total errors deteriorating the machining quality of machine tools, thermal errors need to be decreased. Building the accurate thermal simulation model of spindle system is the premise to study its thermal characteristics and further reduce its thermal errors. However, the accuracy of the thermal simulation model mainly rests with the accuracy of the boundary conditions since the mesh model is accurate enough. In overcoming the poor consistency between the thermal experiment and thermal simulation, thus obtaining the accurate thermal simulation model, the empirically calculated boundary conditions should be optimized, which is essentially an inverse problem. Treating the heat generation rates and the convective heat transfer coefficients as the optimization objects, and the simulation difference as the objective function, a dynamic metamodel assisted differential evolution (DMDE) method is adopted to efficiently search the optimal boundary conditions. The metamodel generated on the already executed data can prescreen out the most promising trial data to speed up the convergence of the differential evolution. And the scoring strategy is used to select the top high possible trial data to further accelerate the convergence. Results demonstrate that the optimal boundary conditions can be obtained using this method with maximum temperature simulation error reduced from 85.6 to 4.9% and thermal extension simulation error reduced from 60.9 to− 3.5%. Furthermore, the number of executions of thermal simulation analysis is reduced from 2000 needed by genetic algorithm or differential evolution to an average of 206 needed by the adopted method.

Keywords

Spindle system Thermal simulation analysis Boundary conditions Metamodel Differential evolution 

Notes

Funding information

This research was financially supported by the Chongqing Research Program of Basic Research and Frontier Technology (grant no. cstc2019jcyj-msxmX0540), the National Natural Science Foundation of China (grant no. 51705058), the National Science and Technology Major Project of China (grant no. 2017ZX04020001-005), and the CAS “Light of West China” Program.

References

  1. 1.
    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284CrossRefGoogle Scholar
  2. 2.
    Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRefGoogle Scholar
  3. 3.
    Bryan J (1990) International status of thermal error research. CIRP Ann Manuf Technol 39(2):645–656CrossRefGoogle Scholar
  4. 4.
    Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95(8):20–38CrossRefGoogle Scholar
  5. 5.
    Ge ZJ, Ding XH (2018) Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP. Int J Mach Tools Manuf 125(2):99–111CrossRefGoogle Scholar
  6. 6.
    Liu T, Gao WG, Zhang DW, Zhang YF, Chang WF, Liang CM, Tian YL (2017) Analytical modeling for thermal errors of motorized spindle unit. Int J Mach Tools Manuf 112(1):53–70CrossRefGoogle Scholar
  7. 7.
    Liu ZF, Pan MH, Zhang AP, Zhao YS, Yang Y, Ma CY (2015) Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance. Int J Adv Manuf Technol 76(9–12):1913–1926CrossRefGoogle Scholar
  8. 8.
    Chow JH, Zhong ZW, Lin W, Khoo LP (2012) A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage. Appl Therm Eng 48(12):89–96CrossRefGoogle Scholar
  9. 9.
    Min X, Jiang S (2011) A thermal model of a ball screw feed drive system for a machine tool. Proc Inst Mech Eng C J Mech Eng Sci 225(1):186–193CrossRefGoogle Scholar
  10. 10.
    Ning JQ, Nguyen V, Huang Y, Hartwig KT, Liang SY (2018) Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int J Adv Manuf Technol 99(5-8):1131–1140CrossRefGoogle Scholar
  11. 11.
    Yang H, Yin GF, Fang H, Liu LX, Zhang DJ, Xu DW (2011) Research on calculation methods of convective heat transfer coefficients for machine tools’ thermal analysis. J Sichuan Univ Eng Sci Edit 43(4):241–248Google Scholar
  12. 12.
    Li DX, Feng PF, Zhang JF, Wu ZJ, Yu DW (2016) Method for modifying convective heat transfer coefficients used in the thermal simulation of a feed drive system based on the response surface methodology. Numer Heat Tr A Appl 69(1):51–66CrossRefGoogle Scholar
  13. 13.
    Tan F, Yin Q, Dong GH, Xie LF, Yin GF (2017) An optimal convective heat transfer coefficient calculation method in thermal analysis of spindle system. Int J Adv Manuf Technol 91(5–8):2549–2560CrossRefGoogle Scholar
  14. 14.
    Zhang LX, Li JP, Wu YH, Zhang K, Wang YW (2018) Prediction model and experimental validation for the thermal deformation of motorized spindle. Heat Mass Transf 54(9):2691–2704CrossRefGoogle Scholar
  15. 15.
    Li Y, Zhao WH, Wu WW, Lu BH (2017) Boundary conditions optimization of spindle thermal error analysis and thermal key points selection based on inverse heat conduction. Int J Adv Manuf Technol 90(9–12):2803–2812CrossRefGoogle Scholar
  16. 16.
    VanderVeer JR, Jaluria Y (2014) Optimization of an inverse convection solution strategy. Int J Heat Mass Transfer 73(6):664–670CrossRefGoogle Scholar
  17. 17.
    Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31CrossRefGoogle Scholar
  18. 18.
    Forrester A, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1–3):50–79CrossRefGoogle Scholar
  19. 19.
    Couckuyt I, Forrester A, Gorissen D, De Turck F, Dhaene T (2012) Blind Kriging: implementation and performance analysis. Adv Eng Softw 49(7):1–13CrossRefGoogle Scholar
  20. 20.
    Harris TA (2007) Rolling bearing analysis: essential concepts of bearing technology fifth ed. Wiley, New YorkGoogle Scholar
  21. 21.
    Sun LJ, Ren MJ, Hong HB, Yin YH (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5–8):1267–1277CrossRefGoogle Scholar
  22. 22.
    Madhusudana CV (2014) Thermal contact conductance. Springer, SwitzerlandCrossRefGoogle Scholar
  23. 23.
    Ma C, Mei XS, Yang J, Zhao L, Shi H (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489CrossRefGoogle Scholar
  24. 24.
    Holman JP (2010) Heat transfer 10th ed., McGraw-HillGoogle Scholar
  25. 25.
    Xu M, Jiang SY, Cai Y (2007) An improved thermal model for machine tool bearings. Int J Mach Tools Manuf 47(1):53–62CrossRefGoogle Scholar
  26. 26.
    Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366CrossRefGoogle Scholar
  27. 27.
    Zheng EL, Jia F, Zhu SH (2014) Thermal modelling and characteristics analysis of high speed press system. Int J Mach Tools Manuf 85(10):87–99CrossRefGoogle Scholar
  28. 28.
    Xi L, Gao JM, Xu L, Zhao Z, Li YL (2018) Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms. Int J Heat Mass Transfer 127(12):1110–1123CrossRefGoogle Scholar
  29. 29.
    Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696CrossRefGoogle Scholar
  30. 30.
    Kleijnen JPC (2014) Simulation-optimization via Kriging and bootstrapping: a survey. J Simul 8(4):241–250CrossRefGoogle Scholar
  31. 31.
    Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRefGoogle Scholar
  32. 32.
    Vincenzi L, Gambarelli P (2017) A proper infill sampling strategy for improving the speed performance of a Surrogate-Assisted Evolutionary Algorithm. Comput Struct 178(1):58–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Feng Tan
    • 1
    Email author
  • Congying Deng
    • 1
  • Haiqiong Xie
    • 1
  • Guofu Yin
    • 2
  1. 1.School of Advanced Manufacturing EngineeringChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China
  2. 2.School of Manufacturing Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations