Advertisement

Design and control of a piezoactuated microfeed mechanism for cell injection

  • Shengdong Yu
  • Mingyang XieEmail author
  • Hongtao Wu
  • Jinyu Ma
  • Roubing Wang
  • Shengzheng Kang
ORIGINAL ARTICLE
  • 38 Downloads

Abstract

A novel microfeed mechanism for cell injection driven by a piezoelectric actuator (PEA) was developed in this study to fulfill the requirement of a precise cell membrane puncture. A bridge-type displacement amplification mechanism was designed based on a compliant mechanism principle and the micrometric displacement characteristic of the PEA to realize the zero-clearance precision motion of the microfeed mechanism using a flexure hinge as a supporting member. Static and modal analyses and structural optimization specific to the bridge-type amplification mechanism were performed to acquire a high inherent frequency and a large displacement amplification coefficient. A simulation verification of the mechanism’s mechanical performance was implemented. A sliding-mode control strategy was proposed, considering that the complicated nonlinear hysteresis effect of PEA might cause low system precision. Cell puncturing experiments were performed on zebrafish embryos to demonstrate the performance of the proposed methodology. In comparison with existing studies, the manipulation precision of the proposed technique was less than 1.1 μm with a strong robustness. Thus, this new approach could be beneficial for the progress of cell puncture technology.

Keywords

: Microfeed mechanism piezoceramic actuator Cell injection Sliding-mode control 

Notes

Acknowledgments

The authors gratefully acknowledge the support agencies.

Funding information

This research is supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC0309102 and 2018YFC0309103), Foreign Experts Affairs (Grant No. G20190010180), and Jiangsu Natural Science Fund (Grant No. BK20180427).

References

  1. 1.
    Permana S, Grant E, Walker G, Yoder JA (2016) A review of automated microinjection system for single cells in the embryogenesis stage. IEEE/ASME Trans Mechatronics 21(5):2391–2404CrossRefGoogle Scholar
  2. 2.
    Yu TC, Chen SX, Wang R, Liu C, Kong CW, Ronald AL, Cheng SH, Sun D (2016) Single cell transfection through precise microinjection with quantitatively controlled injection volumes. Sci Rep 6(1):24127CrossRefGoogle Scholar
  3. 3.
    Li J, de Ávila BEF, Berta GW, Wang J (2017) Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot 2(4):6431CrossRefGoogle Scholar
  4. 4.
    Li Y, Tang H, Xu Q (2011) Development trend of micro-manipulation robot technology for biomed applications. J Mech Eng 47(23):1–13CrossRefGoogle Scholar
  5. 5.
    Braude P, Pickering S, Flinter F, Ogilvie CM (2003) Preimplantation genetic diagnosis. Nat Rev Genet 3(12):941–953CrossRefGoogle Scholar
  6. 6.
    Leung C, Lu Z, Esfandiari N, Casper R, Sun Y (2011) Automated sperm immobilization for intracytoplasmic sperm injection. IEEE Trans Biomed Eng 58:935–942CrossRefGoogle Scholar
  7. 7.
    Xie MY, Li X, Wang Y, Liu Y, Sun D (2017) Saturated PID control for the optical manipulation of biological cells. IEEE Trans Control Syst Technol 26(5):1909–1916CrossRefGoogle Scholar
  8. 8.
    Beutel T, Ferreira N, Balck A, Leester-Schadel M, Buttgenbach S (2012) Cell manipulation system based on a self-calibrating silicon micro force sensor providing capillary status monitoring. IEEE Sensors J 12(10):3075–3081CrossRefGoogle Scholar
  9. 9.
    Xie MY, Shakoor A, Shen YJ, James KM, Sun D (2019) Out-of-plane rotation control of biological cells with a robot-tweezers manipulation system for orientation-based cell surgery. IEEE Trans Biomed Eng 66:199–207CrossRefGoogle Scholar
  10. 10.
    Xie MY, Shakoor A, Wu CC (2018) Manipulation of biological cells using a robot-aided optical tweezers system. Micromachines 9(5):245CrossRefGoogle Scholar
  11. 11.
    Xie Y, Sun D, Tse HYG, Liu C, Cheng SH (2011) Force sensing and manipulation strategy in robot-assisted microinjection on zebrafish embryos. IEEE/ASME Trans Mechatronics 16(6):1002–1010CrossRefGoogle Scholar
  12. 12.
    Xie MY, Shakoor A, Li CT, Sun D (2019) Robust orientation control of multi-DOF cell based on uncertainty and disturbance estimation. Int J Robust Nonlinear Control 29(14):4859–4871MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Zhou M, Fan Z, Ma Z, Zhao H, Guo Y, Hong K, Li YS, Liu H, Wu D (2017) Design and experimental research of a novel stick-slip type piezoelectric actuator. Micromachines 8(5):150CrossRefGoogle Scholar
  14. 14.
    Mishra JP, Xu Q, Yu X, Jalili M (2018) Precision position tracking for piezoelectric-driven motion system using continuous third-order sliding mode control. IEEE/ASME Trans Mechatronics 23(4):1521–1531CrossRefGoogle Scholar
  15. 15.
    Sun D, Wang S, Hata S, Sakurai J, Shimokohbe A (2010) Theoretical and experimental investigation of traveling wave propagation on a several- millimeter-long cylindrical pipe driven by piezoelectric ceramic tubes. Ultrason Ferroelectr Freq Control IEEE Trans 57(7):1600–1611CrossRefGoogle Scholar
  16. 16.
    Kimura Y, Yanagimachi R (2012) Intracytoplasmic sperm injection in the mouse. Biol Reprod 286(5437):51–52Google Scholar
  17. 17.
    Huang H, Mills J, Lu C, Sun D (2011) A universal piezo-driven ultrasonic cell microinjection system. Biomed Microdevices 13(4):743–752CrossRefGoogle Scholar
  18. 18.
    Wang G, Xu Q (2017) Design and precision position/force control of a piezo-driven microinjection system. IEEE/ASME Trans Mechatron 22(4):1744–1754CrossRefGoogle Scholar
  19. 19.
    Peng J, Chen X (2013) A survey of modeling and control of piezoelectric actuators. Mod Mech Eng 3(1):1–20CrossRefGoogle Scholar
  20. 20.
    Cao Y, Chen XB (2014) Survey of modeling and control issues for piezo-electric actuators. J Dyn Syst Meas Control 137(1):014001CrossRefGoogle Scholar
  21. 21.
    Gu GY, Zhu LM, Su CY, Ding H, Fatikow S (2014) Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans Autom Sci Eng 13(1):313–332CrossRefGoogle Scholar
  22. 22.
    Lallart M, Li K, Yang Z, Wang W (2019) System-level modeling of nonlinear hysteretic piezoelectric actuators in quasi-static operations. Mech Syst Signal Process 116:985–996CrossRefGoogle Scholar
  23. 23.
    Chouza A, Barambones O, Calvo I, Velasco J (2019) Sliding mode-based robust control for piezoelectric actuators with inverse dynamics estimation. Energies 12(5):943CrossRefGoogle Scholar
  24. 24.
    Yu SD, Ma JY, Wu HT, Kang SZ (2019) Robust precision motion control of piezoelectric actuators using fast nonsingular terminal sliding mode with time delay estimation. Meas Control 52(1-2):11–19CrossRefGoogle Scholar
  25. 25.
    Cai K, Tian Y, Wang F, Zhang D, Liu X, Shirinzadeh B (2017) Design and control of a 6-degree-of-freedom precision positioning system. Robot Comput Integr Manuf 44:77–96CrossRefGoogle Scholar
  26. 26.
    Choi JC, Kim MS, Kim YH, Kim C, Huh GJ (2002) An automated process planning and die design system for quasi-axisymmetric cold forging products. Int J Adv Manuf Technol 20(3):201–213CrossRefGoogle Scholar
  27. 27.
    Mohammed JAK, Mohammed FM, Raghda'a AA (2019) Design and optimization of a surface-mounted permanent-magnet linear synchronous motor with Maxwell ANSYS. Al-Khwarizmi Eng J 15(3):1–15CrossRefGoogle Scholar
  28. 28.
    Zhidong L, Haoran C, Huijun P, Mingbo Q, Zongjun T (2015) Automatic control of WEDM servo for silicon processing using current pulse probability detection. Int J Adv Manuf Technol 76(1-4):367–374CrossRefGoogle Scholar
  29. 29.
    Zhao P, Shi YY (2014) Posture adaptive control of the flexible grinding head for blisk manufacturing. Int J Adv Manuf Technol 70(9-12):1989–2001CrossRefGoogle Scholar
  30. 30.
    Jiang B, Karimi HR, Kao Y, Gao C (2018) Adaptive control of nonlinear semi-Markovian jump TS fuzzy systems with immeasurable premise variables via sliding mode observer. IEEE transactions on cybernetics.Google Scholar
  31. 31.
    Jiang B, Karimi HR, Kao Y, Gao C (2019) Takagi-Sugeno model based event-triggered fuzzy sliding mode control of networked control systems with semi-Markovian switchings. IEEE Trans Fuzzy Syst PP(99):1–11Google Scholar
  32. 32.
    Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9-10):924–941MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Ott C (2008) Cartesian impedance control of redundant and flexible-joint robots. Springer, BerlinGoogle Scholar
  34. 34.
    Erno W, Wigard PK, Eric M, Ezequiel AS, Eugene B, Ewart B, Robert HH, Sakari K, Ronald HAP (2005) MicroRNA expression in zebrafish embryonic development. Sci 309(5732):310–311CrossRefGoogle Scholar
  35. 35.
    Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ren K, Xu K, Chen WH (2018) NURBS toolpath planning for glass sharp corner edge grinding. Int J Adv Manuf Technol 97(5-8):2997–3007CrossRefGoogle Scholar
  37. 37.
    Ren K, Xu K, Chen W, Pan J, Yao B (2017) Sharp corner transitional trajectory planning based on arc splines in glass edge grinding. Int J Adv Manuf Technol 93(9-12):4089–4098CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Wenzhou Vocational and Technical CollegeWenzhouChina

Personalised recommendations