Method exploration of flux bands constricting arc welding for high-strength steel T-joints

  • Lei Wang
  • Jisen QiaoEmail author
  • Zhenwen Chen
  • Liang Zhu
  • Jianhong Chen


A new energy-efficient welding method, flux bands constricting arc (FBCA) welding, is proposed to solve the fabrication of metal sandwich panels. This method is suitable for welding T-joints in special structures where the welding gun is unable to reach the welding position, such as welding thick face-plate metal sandwich panels. The characteristics of FBCA welding, key welding technologies, and corresponding defects and resolutions are discussed. Pull-out tests between T-joints welded by laser and FBCA welding were conducted. Results indicate that complete penetration and good fusion of three-sided T-joint can be produced by FBCA welding. The typical cross section morphology is unlike other common welding methods. T-joints without defects, such as weld asymmetry, root leakage, slag inclusion, and pores, show better ultimate tensile strength than T-joints welded by laser welding. The FBCA welding method can compensate for shortage of insufficient weld width of laser welding.


Constricting arc Ultra-narrow gap welding T-joints High-strength steel Sandwich panels 


Funding information

The authors received financial support for this research from the National Natural Science Foundation of China (Grant No. 51665033), Innovation and Enterprise Foundation of Gansu Provincial Sci. & Tech. Department (Grant No. 17CX2JA026), and Elite Student Study Abroad Foundation of Lanzhou University of Technology.


  1. 1.
    Säynäjäkangas J, Taulavuori T (2004) A review in design and manufacturing of stainless steel sandwich panels. Stainless Steel World 55:59Google Scholar
  2. 2.
    Kujala P, Klanac A (2005) Steel sandwich panels in marine applications. Brodogradnja 56(4):305–314Google Scholar
  3. 3.
    Crupi V, Epasto G, Guglielmino E (2011) Low-velocity impact strength of sandwich materials. J Sandw Struct Mater 13(4):409–426CrossRefGoogle Scholar
  4. 4.
    Wadley HN, Fleck NA, Evans AG (2003) Fabrication and structural performance of periodic cellular metal sandwich structures. Compos Sci Technol 63(16):2331–2343CrossRefGoogle Scholar
  5. 5.
    Fleck N, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. Proc R Soc Lond A Math Phys Eng Sci 2121:2495–2516CrossRefGoogle Scholar
  6. 6.
    Kozak J (2007) Forecasting of fatigue life of laser welded joints. Zagadnienia Eksploatacji Maszyn 149(1):85–94Google Scholar
  7. 7.
    Frank D, Romanoff J, Remes H (2013) Fatigue strength assessment of laser stake-welded web-core steel sandwich panels. Fatigue Fract Eng Mater Struct 36(8):724–737CrossRefGoogle Scholar
  8. 8.
    Romanoff J, Varsta P (2007) Bending response of web-core sandwich plates. Compos Struct 81(2):292–302CrossRefGoogle Scholar
  9. 9.
    Kolsters H, Zenkert D (2006) Buckling of laser-welded sandwich panels. Part 1: elastic buckling parallel to the webs. Proc Inst Mech Eng M J Eng Marit Environ 220(2):67–79Google Scholar
  10. 10.
    Kolsters H, Zenkert D (2006) Buckling of laser-welded sandwich panels. Part 2: elastic buckling normal to the webs. Proc Inst Mech Eng M J Eng Marit Environ 220(2):81–94Google Scholar
  11. 11.
    Kolsters H, Zenkert D (2010) Buckling of laser-welded sandwich panels: ultimate strength and experiments. Proc Inst Mech Eng M J Eng Marit Environ 224(1):29–45Google Scholar
  12. 12.
    Jelovica J, Romanoff J, Ehlers S, Varsta P (2012) Influence of weld stiffness on buckling strength of laser-welded web-core sandwich plates. J Constr Steel Res 77:12–18CrossRefGoogle Scholar
  13. 13.
    Jelovica J, Romanoff J, Ehlers S, Aromaa J (2013) Ultimate strength of corroded web-core sandwich beams. Mar Struct 31:1–14CrossRefGoogle Scholar
  14. 14.
    Romanoff J, Remes H, Socha G, Jutila M, Varsta P (2007) The stiffness of laser stake welded T-joints in web-core sandwich structures. Thin-Walled Struct 45(4):453–462CrossRefGoogle Scholar
  15. 15.
    Jiang XX, Li JM, Cao R, Zhu L, Chen JH, Wu YX, Li ZG (2014) Microstructures and properties of sandwich plane laser-welded joint of hull steel. Mater Sci Eng A 595:43–53CrossRefGoogle Scholar
  16. 16.
    Cai X, Fan C, Lin S, Yang C, Hu L, Ji X (2017) Effects of shielding gas composition on arc behaviors and weld formation in narrow gap tandem GMAW. Int J Adv Manuf Technol 91(9–12):3449–3456CrossRefGoogle Scholar
  17. 17.
    Zhang J, Xu W, Wang Y, Wang Y, Zhang X, Liao Y (2003) Effect of welding heat input on HAZ character in ultra-fine grain steel welding. China Weld 12(2):122–127Google Scholar
  18. 18.
    Meng Y, Li G, Gao M, Zhang C, Zeng X (2019) Formation and suppression mechanism of lack of fusion in narrow gap laser-arc hybrid welding. Int J Adv Manuf Technol 100(9–12):2299–2309CrossRefGoogle Scholar
  19. 19.
    Gong M, Kawahito Y, Li G, Gao M, Zeng X (2017) Stabilization effect of space constraint in narrow gap laser-arc hybrid welding analyzed by approximate entropy. Int J Adv Manuf Technol 92(9–12):3093–3102CrossRefGoogle Scholar
  20. 20.
    Zhang G, Shi Y, Zhu M, Fan D (2017) Arc characteristics and metal transfer behavior in narrow gap gas metal arc welding process. J Mater Process Technol 245:15–23CrossRefGoogle Scholar
  21. 21.
    Kang Y, Na S (2003) Characteristics of welding and arc signal in narrow groove gas metal arc welding using electromagnetic arc oscillation. Weld J 82(5):93/S–99/SGoogle Scholar
  22. 22.
    Xu W, Lin S, Fan C, Yang C (2015) Prediction and optimization of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int J Adv Manuf Technol 79(1–4):183–196CrossRefGoogle Scholar
  23. 23.
    Guo N, Lin S, Zhang L, Yang C (2009) Metal transfer characteristics of rotating arc narrow gap horizontal GMAW. Sci Technol Weld Join 14(8):760–764CrossRefGoogle Scholar
  24. 24.
    Wang J, Zhu J, Fu P, Su R, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52(1):110–114CrossRefGoogle Scholar
  25. 25.
    Zhu L, Zheng S-X, Chen J-H (2006) Development of ultra-narrow gap welding with constrained arc by flux band. China Weld 15(2):44–49Google Scholar
  26. 26.
    Zheng S, Zhu L, Huang B, Chen J (2009) Constricted arc by flux strips applied to ultra-narrow gap welding. J Mech Eng 45(2):219–223CrossRefGoogle Scholar
  27. 27.
    Siltanen J, Tihinen S, Kömi J (2015) Laser and laser gas-metal-arc hybrid welding of 960 MPa direct-quenched structural steel in a butt joint configuration. J Laser Appl 27(S2):S29007CrossRefGoogle Scholar
  28. 28.
    Kashaev N, Ventzke V, Fomichev V, Fomin F, Riekehr S (2016) Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt Lasers Eng 86:172–180CrossRefGoogle Scholar
  29. 29.
    Frank D, Remes H, Romanoff J (2011) Fatigue assessment of laser stake-welded T-joints. Int J Fatigue 33(2):102–114CrossRefGoogle Scholar
  30. 30.
    Kou S, Sun D (1985) Fluid flow and weld penetration in stationary arc welds. Metall Trans A 16(1):203–213CrossRefGoogle Scholar
  31. 31.
    Rokhlin S, Guu A (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld J 72(8):381Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Lei Wang
    • 1
    • 2
  • Jisen Qiao
    • 1
    • 2
    Email author
  • Zhenwen Chen
    • 1
  • Liang Zhu
    • 1
    • 2
  • Jianhong Chen
    • 1
    • 2
  1. 1.Lanzhou University of TechnologyLanzhouChina
  2. 2.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina

Personalised recommendations