Influence of manufacturing parameters on the mechanical properties of projection stereolithography–manufactured specimens

  • D. Ambrosio
  • X. Gabrion
  • P. Malécot
  • F. Amiot
  • S. ThibaudEmail author


This study focuses on the impact of different fabrication parameters (build orientation, layer thickness and post-curing time) on the mechanical properties of parts fabricated through projection stereolithography technology. A Titan 2 HR printer (Kudo3D Inc.©) was used to print the specimens. Three different resins have been investigated. Specimens have been organised in 7 families for each material. Besides the different chemical compositions of the resins, the results globally show that the most influential factor on the mechanical properties (ultimate tensile strength, Young’s modulus, elongation at break) is the build orientation. Contrarily, the effect of the post-curing time has proved to be highly dependent on the chemical composition of polymers, playing a significant role only for resins that do not complete the polymerisation process during printing and therefore require a subsequent treatment time. Layer thickness in this application has shown a relevant influence on the mechanical characteristics of the studied resins.


Additive manufacturing Projection stereolithography Material properties 


Funding information

The authors gratefully acknowledge ERASMUS + 2017-18 program for funding this project (Grant Agreement No. 2017-1-IT02-KA103-035320 - I NAPLES01).


  1. 1.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies 61–63, SpringerGoogle Scholar
  2. 2.
    Alexander P, Allen S, Duttax D (1998) Part orientation and build cost determination in layered manufacturing. Comput Aided Des 30(5):343–356CrossRefGoogle Scholar
  3. 3.
    Fuh JYH, Lu L, Tan CC, Shen ZX, Chew S (1999) Curing characteristics of acrylic photopolymer used in stereolithography process. Rapid Prototyp J 5(1):27–34CrossRefGoogle Scholar
  4. 4.
    Dulieu-Barton JM, Fulton MC (2000) Mechanical properties of a typical stereolithography resin. Strain 36:2CrossRefGoogle Scholar
  5. 5.
    Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130CrossRefGoogle Scholar
  6. 6.
    Wicker R, Ranade AV, Medina F, Palmer JA (2005) Embedded micro-channel fabrication using line-scan stereolithography. Assem Autom 25(4):316–329CrossRefGoogle Scholar
  7. 7.
    Yang Y, Li L, Zhao J (2019) Mechanical property modeling of photosensitive liquid resin in stereolithography additive manufacturing: bridging degree of cure with tensile strength and hardness. Mater Des 2019(162):418–428CrossRefGoogle Scholar
  8. 8.
    Bertsch A, Bernhard P, Vogt C, Renaud P (2000) Rapid prototyping of small size objects. Rapid Prototyp J 6:259–266CrossRefGoogle Scholar
  9. 9.
    Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A 121:113–120CrossRefGoogle Scholar
  10. 10.
    Mahdi Emami M, Barazandeh F, Yaghmaie F (2014) Scanning-projection based stereolithography: method and structure. Sensors Actuat A Phys 218:116–124CrossRefGoogle Scholar
  11. 11.
    Dizon JRC, Espera AH, Chen Q, Advincul RC (2018) Mechanical characterization of 3D-printed polymers. Additive Manuf 20:44–67CrossRefGoogle Scholar
  12. 12.
    Quintana R, Choi J-W, Puebla K, Wicker R (2010) Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-63 type I specimens. Int J Adv Manuf Technol 46:201–215CrossRefGoogle Scholar
  13. 13.
    Domínguez-Rodríguez G, Ku-Herrera JJ, Hernández-Pérez A (2018) An assessment of the effect of printing orientation, density, and filler pattern on the compressive performance of 3D printed ABS structures by fuse deposition, Int J Adv Manuf Technol, 95, 5–8CrossRefGoogle Scholar
  14. 14.
    Rohde S, Cantrell J, Jerez A, Kroese C, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Steinbach D, Ifju P (2018) Experimental characterization of the shear properties of 3D–printed ABS and polycarbonate parts. Exp Mech 58(6):871–884CrossRefGoogle Scholar
  15. 15.
    Abid S, Messadi R, Hassine T, Ben Daly H, Soulestin J, Lacrampe MF (2019) Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design. Int J Adv Manuf Technol 100 (5-8):1363–1372CrossRefGoogle Scholar
  16. 16.
    Jiang J, Lou J, Hu G (2019) Effect of support on printed properties in fused deposition modelling processes. Virt Phys Prototyp 14(4):308–315CrossRefGoogle Scholar
  17. 17.
    Chockalingam K, Jawahar N, Chandrasekhar U (2006) Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp J 12(2):106–113CrossRefGoogle Scholar
  18. 18.
    Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16(3):467–481CrossRefGoogle Scholar
  19. 19.
    Chantarapanich N, Puttawibul P, Sitthiseripratip K, Sucharitpwatskul S, Chantaweroad S (2013) Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. Songklanakarin J Sci Technol 35:91–98Google Scholar
  20. 20.
    Hague R (2004) Materials analysis of stereolithography resins for use in rapid manufacturing. J Mater Sci 39 (7):2457–2464CrossRefGoogle Scholar
  21. 21.
    Jiang J, Stringer J, Xu X, Zhong RY (2018) Investigation of printable threshold overhang angle in extrusion-based additive manufacturing for reducing support waste. Int J Comput Integr Manuf 31(10):961–969CrossRefGoogle Scholar
  22. 22.
    Jiang J, Xu X, Stringer J (2019) Optimization of process planning for reducing material waste in extrusion based additive manufacturing, vol 59CrossRefGoogle Scholar
  23. 23.
    Material Safety Data Sheet - S-PROGoogle Scholar
  24. 24.
    Material Safety Data Sheet - X-GREENGoogle Scholar
  25. 25.
    Material Safety Data Sheet - ABSGoogle Scholar
  26. 26.
    Jerabeka M, Major Z, Lang RW (2010) Strain determination of polymeric materials using digital image correlation. Polym Test 29:407–416CrossRefGoogle Scholar
  27. 27.
    Roylance D (2001) Stress-Strain curves, Massachusetts Institute of Technology, Department of Materials Science and EngineeringGoogle Scholar
  28. 28.
    Chattopadhyay DK, Sankar Panda S, Raju KVSN (2005) Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Progress Org Coat 54(1):10–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.FEMTO-ST InstituteUniversité Bourgogne-Franche-Comté, ENSMMBesançonFrance
  2. 2.FEMTO-ST InstituteUniversité Bourgogne-Franche-Comté, CNRSBesançonFrance

Personalised recommendations