Comparative assessment of machining environments (dry, wet and MQL) in hard turning of AISI 4140 steel with CC6050 tools

  • M. Elbah
  • H. LaouiciEmail author
  • S. Benlahmidi
  • M. Nouioua
  • MA. Yallese


Large quantities of coolant–lubricants are still widely used in the metal working industry, generating high consumption and discard costs and impacting the environment. This paper presents the evaluation of the performances of the various machining environments (dry, conventional wet and MQL technique) applied in hard turning of the AISI 4140 high-strength low alloy steel with coated mixed ceramic (CC6050) in terms of surface roughness, cutting force components, and tool wear. For this purpose, a number of machining experiments based on statistical four-factor (cutting speed, feed rate, depth of cut, and cutting radius) and hybrid-level factorial experiment designs uncompleted with a statistical analysis of variance were performed. The results indicate that the resulting cutting force obtained with the MQL machining process significantly improved when compared with other machining processes. For example: FRMQL ≈ 1.08 FRdry and FRwet ≈ 1.37 FRdry. Then, the RSM was utilized to define the optimal machining parameters. Finally, the ranges for best cutting conditions are proposed for serial industrial production.


Hard turning AISI 4140 steel Ceramic Minimum quantity lubrication (MQL) Coolant–lubricant RSM 



Analysis of variance

ap (X3)

Depth of cut, mm


Box-Behnken design

f (X2)

Feed rate, mm/rev


Resulting cutting force, N


Radial force, N


Tangential force, N


Rockwell hardness


Minimum quantity lubrication


Arithmetic mean roughness, μm


Total roughness, μm


Response surface methodology

rɛ (X4)

Cutting radius, mm


Flank wear, mm

Vc (X1)

Cutting speed, m/min


Clearance angle, degree


Rake angle, degree


Inclination angle, degree


Major cutting edge angle, degree



  1. 1.
    Byers JP (2006) Metal working fluids, second edition. Woodhead, PhiladelphiaGoogle Scholar
  2. 2.
    Nouioua M, Yallese MA, Khettabi R, Belhadi S, Bouhalais ML, Girardin F (2017) Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN). Int J Adv Manuf Technol 93(5–8):2485–2504CrossRefGoogle Scholar
  3. 3.
    Rahim EA, Samsudin ZH, Rahim MAA, Mohid Z (2014) Performance investigation of modified turning tool holder for MQL application. Appl Mech Mater 465–466:1114–1118Google Scholar
  4. 4.
    Aouici H, Yallese MA, Chaoui K, Mabrouki T, Rigal JF (2012) Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization. Measurement 45:344–353CrossRefGoogle Scholar
  5. 5.
    Bouacha K, Terrab A (2016) Hard turning behavior improvement using NSGA-II and PSO-NN hybrid model. Int J Adv Manuf Technol 86(9–12):3527–3546CrossRefGoogle Scholar
  6. 6.
    Gaitonde VN, Karnik SR, Figueira L, Davim JP (2009) Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater Manuf Process 24(12):1373–1382CrossRefGoogle Scholar
  7. 7.
    Dilbag SP, Venkateswara RA (2007) Surface roughness prediction model for hard turning process. J Adv Manuf Technol 32:1115–1124CrossRefGoogle Scholar
  8. 8.
    Davim JP (2011) Machining of hard materials. (Ed.) SpringerGoogle Scholar
  9. 9.
    Elbah M, Yallese MA, Aouici H, Mabrouki T, Rigal JF (2013) Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 46:3041–3056CrossRefGoogle Scholar
  10. 10.
    Aouici H, Bouchelaghem H, Yallese MA, Elbah M, Fnides B (2014) Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int J Adv Manuf 73:1775–1788CrossRefGoogle Scholar
  11. 11.
    Suda S, Yokota H, Inasaki I, Wakabayashi T (2002) A synthetic ester as an optimal cutting fluid for minimal quantity lubrication machining. CIRP Annals - Manuf Technol 51:95–98CrossRefGoogle Scholar
  12. 12.
    Suda S, Wakabayashi T, Inasaki I, Yokota H (2004) Multifuctional application of a synthetic ester to machine tool lubrication based on MQL machining lubricants. CIRP Annals - Manuf Technol 53:61–64CrossRefGoogle Scholar
  13. 13.
    Tasdelen B, Thordenberg H, Olofsson D (2008) An experimental investigation on contact length during MQL machining. J Mat Process Technol 203(1–3):221–231CrossRefGoogle Scholar
  14. 14.
    Shen Bin (2008) Minimum quantity lubrication grinding using Nano fluids. A dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy (Mechanical Engineering) in the University of MichiganGoogle Scholar
  15. 15.
    Braga DU, Diniz AE, Miranda GWA, Coppini NL (2002) Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum-silicon alloys. J Mater Process Technol 122(1):127–138CrossRefGoogle Scholar
  16. 16.
    Filipovic A, Stephenson DA (2006) Minimum quantity lubrication applications in automotive power-train machining. Mach Sci Technol 10:3–22CrossRefGoogle Scholar
  17. 17.
    Davim JP, Sreejith PS, Silva J (2007) Turning of brasses using minimum quantity of lubricant and flooded lubricant conditions. Mater Manuf Process 22:45–50CrossRefGoogle Scholar
  18. 18.
    Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Machine Tools Manuf 46:1–6CrossRefGoogle Scholar
  19. 19.
    Rahman M, Senthil Kumar A, Salam MU (2001) Evaluation of minimal quantities of lubricant in end milling. Int J Adv Manuf Technol 18(4):235–241CrossRefGoogle Scholar
  20. 20.
    Lopez de Lacalle LN, Angulo C, Lamikiz A, Sanchez JA (2006) Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. J Mater Process Technol 172:11–15CrossRefGoogle Scholar
  21. 21.
    Su YL, Liu TH, Su CT, Yao SH, Kao WH, Cheng KW (2006) Wear of CrC-coated carbide tools in dry machining. J Mater Process Technol 171:108–117CrossRefGoogle Scholar
  22. 22.
    Liao YS, Lin HM (2007) Mechanism of minimum quantity lubrication in highspeed milling of hardened steel. Int J Machine Tools Manuf 47:1660–1666CrossRefGoogle Scholar
  23. 23.
    Wakabayashi T, Sato H, Inasaki I (1998) Turning using extremely small amounts of cutting fluids. JSME Int J 41:143–148CrossRefGoogle Scholar
  24. 24.
    Dhar NR, Ahmed MT, Islam S (2007) An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Machine Tools Manuf 47(5):748–753CrossRefGoogle Scholar
  25. 25.
    Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Prorcess Technol 192:281–286CrossRefGoogle Scholar
  26. 26.
    Baheti U, Guo C, Malkin S (1998) Environmentally conscious cooling and lubrication for grinding. Procee Int Seminar Imp Machine Tool Perf 2:643–654Google Scholar
  27. 27.
    Hafenbraedl D, Malkin S (2000) Environmentally-conscious minimum quantity lubrication (MQL) for internal cylindrical grinding. Trans NAMRI/SME 28:149–154Google Scholar
  28. 28.
    Silva LR, Bianchi EC, Catai RE, Fusse RY, Franca TV (2005) Study on the behavior of the minimum quantity lubricant - MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel. J Brazilian Society of Mech Sci Eng 27(2):192–199CrossRefGoogle Scholar
  29. 29.
    Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding. Int J Machine Tools Manuf 49:924–932CrossRefGoogle Scholar
  30. 30.
    Aouici H, Elbah M, Yallese MA, Fnides B, Meddour I, Benlahmidi S (2016) Performance comparison of wiper and conventional ceramic inserts in hard turning of AISI 4140 steel: analysis of machining forces and flank wear. Int J Adv Manuf 87(5–8):2221–2244CrossRefGoogle Scholar
  31. 31.
    Bouchelaghem H, Yallese MA, Mabrouki T, Amirat A, Rigal JF (2010) Experimental investigation and performance analysis of CBN insert in hard turning of cold work tool steel (D3). Mach Sci Technol 14:471–501CrossRefGoogle Scholar
  32. 32.
    Bensouilah H, Aouici H, Meddour I, Yallese MA, Mabrouki T, Girardin F (2016) Performance of coated and uncoated mixed ceramic tools in hard turning process. Measurement 82:1–18CrossRefGoogle Scholar
  33. 33.
    Lima JG, Avila RF, Abrao AM, Faustino M, Davim JP (2005) Hard turning AISI 4340 high strength low alloyed steel and AISI D2 cold work steel. J Mater Process Technol 169:388–395CrossRefGoogle Scholar
  34. 34.
    Yallese MA, Rigal JF, Chaoui K, Boulanouar L (2005) The effects of cutting conditions on mixed ceramic and cubic boron nitride tool wear and on surface roughness during machining of X200Cr12 steel (60HRC). J Eng Manuf Procee IMechE part B 219:35–55CrossRefGoogle Scholar
  35. 35.
    Aouici H, Khellaf A, Smaiah S, Elbah M, Fnides B, Yallese MA (2017) Comparative assessment of coated and uncoated ceramic tools on cutting force components and tool wear in hard turning of AISI H11 steel using Taguchi plan and RMS. Sādhanā 42(12):2157–2170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • M. Elbah
    • 1
    • 2
  • H. Laouici
    • 1
    • 2
    Email author
  • S. Benlahmidi
    • 1
    • 2
  • M. Nouioua
    • 1
    • 2
  • MA. Yallese
    • 1
    • 2
  1. 1.Département de Génie Mécanique LaboratoireMécanique et Structures (LMS), FST, Université 08 Mai 1945GuelmaAlgeria
  2. 2.Ecole Nationale Supérieure de TechnologieAlgiersAlgeria

Personalised recommendations