Advertisement

Tribological behavior of electroless Ni–P/Ni–P–TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process

  • Diego F. Carrillo
  • Ana C. Santa
  • Andrés Valencia-Escobar
  • Alejandro Zapata
  • Félix Echeverría
  • Maryory A. Gómez
  • Alejandro A. Zuleta
  • Juan G. CastañoEmail author
ORIGINAL ARTICLE
  • 27 Downloads

Abstract

Studies about the tribological behavior of Ni–P–TiO2 coatings on magnesium alloys are very scarce and the wear mechanisms involved are not analyzed. In this work, Ni–P and Ni–P/Ni–P–TiO2 nanocomposite coatings have been formed on AZ91D magnesium alloy by direct electroless technique with multiple steps, avoiding both the use of Cr(VI) compounds and the HF activation procedure. This work focused on two main aspects: (i) the formation of the composite coatings with different sizes and concentrations of TiO2 nanoparticles, studying their morphology and chemical composition, and (ii) the study of the tribological properties of the coatings under dry sliding conditions. For tribological and mechanical evaluation, dry sliding friction and wear testing and nanoindentation measurements were performed. Scanning electron microscopy equipped with energy-dispersive X-ray (SEM/EDX) and X-ray diffraction (XRD) was used for the characterization of the coatings. Wear tracks and debris were analyzed by means micro-Raman spectroscopy and SEM/EDX. The addition of TiO2 nanoparticles decreases the wear rate and improves the tribological behavior of the coatings. The wear mechanisms involve flattening of the nodules and abrasive wear to three bodies, accompanied by tribo-oxidation.

Keywords

Magnesium alloys Electroless coatings Ni–P Surface morphology, tribology TiO2 nanoparticles 

Notes

Acknowledgments

The authors are grateful to “Departamento Administrativo de Ciencia, Tecnología e Innovación–COLCIENCIAS (project 1115-715-51447, contract No. 284-2016),” “Centro de Investigación para el Desarrollo y la Innovación (CIDI)” from the Universidad Pontificia Bolivariana through UPB-Innova Rad: 742B-03/17-35, and Universidad de Antioquia (2015-4964).

References

  1. 1.
    Mordike BL, Kainer KU (2000) Magnesium alloys and their applications. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Huo H, Li Y, Wang F (2004) Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros Sci 46:1467–1477.  https://doi.org/10.1016/j.corsci.2003.09.023 CrossRefGoogle Scholar
  3. 3.
    Ghali E, Dietzel W, Kainer KU (2004) General and localized corrosion of magnesium alloys: a critical review. J Mater Eng Perform 13:7–23.  https://doi.org/10.1361/10599490417533 CrossRefGoogle Scholar
  4. 4.
    Rudd AL, Breslin CB, Mansfeld F (2000) The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corros Sci 42:275–288.  https://doi.org/10.1016/S0010-938X(99)00076-1 CrossRefGoogle Scholar
  5. 5.
    Hari Krishnan K, John S, Srinivasan KN, Praveen J, Ganesan M, Kavimani PM (2006) An overall aspect of electroless Ni-P depositions—a review article. Metall Mater Trans A 37:1917–1926.  https://doi.org/10.1007/s11661-006-0134-7 CrossRefGoogle Scholar
  6. 6.
    Wu LP, Zhao J, Xie Y, Yang Z (2010) Progress of electroplating and electroless plating on magnesium alloy. Trans Nonferrous Metals Soc China 20:s630–s637.  https://doi.org/10.1016/S1003-6326(10)60552-3 CrossRefGoogle Scholar
  7. 7.
    Zhang WX, Huang N, He JG, Jiang ZH, Jiang Q, Lian JS (2007) Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy. Appl Surf Sci 253:5116–5121.  https://doi.org/10.1016/j.apsusc.2006.11.022 CrossRefGoogle Scholar
  8. 8.
    Zhao H, Huang Z, Cui J (2007) A new method for electroless Ni–P plating on AZ31 magnesium alloy. Surf Coat Technol 202:133–139.  https://doi.org/10.1016/j.surfcoat.2007.05.001 CrossRefGoogle Scholar
  9. 9.
    Sudagar J, Bi GL, Jiang ZH, Li GY, Jiang Q, Lian JS (2011) Electrochemical polarization behaviour of electroless Ni-P deposits with different chromium-free pre-treatment on magnesium alloy. Int J Electrochem Sci 6:2767–2788Google Scholar
  10. 10.
    Zhang WX, He JG, Jiang ZH, Jiang Q, Lian JS (2007) Electroless Ni-P layer with a chromium-free pretreatment on AZ91D magnesium alloy. Surf Coat Technol 201:4594–4600.  https://doi.org/10.1016/j.surfcoat.2006.09.312 CrossRefGoogle Scholar
  11. 11.
    Sudagar J, Lian J, Sha W (2013) Electroless nickel, alloy, composite and nano coatings – a critical review. J Alloys Compd 571:183–204.  https://doi.org/10.1016/j.jallcom.2013.03.107 CrossRefGoogle Scholar
  12. 12.
    Zuleta AA, Correa E, Sepúlveda M, Guerra L, Castaño JG, Echeverría F, Skeldon P, Thompson GE (2012) Effect of NH4HF2 on deposition of alkaline electroless Ni–P coatings as a chromium-free pre-treatment for magnesium. Corros Sci 55:194–200.  https://doi.org/10.1016/j.corsci.2011.10.028 CrossRefGoogle Scholar
  13. 13.
    Zuleta AA, Correa E, Castaño JG, Echeverria F, Baron-Wiechec A, Skeldon P, Thompson GE (2017) Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy. Surf Coat Technol 321:309–320.  https://doi.org/10.1016/j.surfcoat.2017.04.059 CrossRefGoogle Scholar
  14. 14.
    Correa E, Mejía JF, Castaño JG, Echeverría F, Gómez M (2017) Tribological characterization of electroless Ni-B coatings formed on commercial purity magnesium. J Tribol 139:051302–1 - 051302-9.  https://doi.org/10.1115/1.4036169 CrossRefGoogle Scholar
  15. 15.
    Wang HL, Liu LY, Dou Y, Zhang WZ, Jiang WF (2013) Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy. Appl Surf Sci 286:319–327.  https://doi.org/10.1016/j.apsusc.2013.09.079 CrossRefGoogle Scholar
  16. 16.
    Calderón JA, Jiménez JP, Zuleta AA (2016) Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings. Surf Coat Technol 304:167–178.  https://doi.org/10.1016/j.surfcoat.2016.04.063 CrossRefGoogle Scholar
  17. 17.
    Shu X, Wang Y, Liu C, Aljaafari A, Gao W (2015) Double-layered Ni-P/Ni-P-ZrO2 electroless coatings on AZ31 magnesium alloy with improved corrosion resistance. Surf Coat Technol 261:161–166.  https://doi.org/10.1016/j.surfcoat.2014.11.040 CrossRefGoogle Scholar
  18. 18.
    Georgiza E, Novakovic J, Vassiliou P (2013) Characterization and corrosion resistance of duplex electroless Ni-P composite coatings on magnesium alloy. Surf Coat Technol 232:432–439.  https://doi.org/10.1016/j.surfcoat.2013.05.047 CrossRefGoogle Scholar
  19. 19.
    Sadreddini S, Salehi Z, Rassaie H (2015) Characterization of Ni–P–SiO2 nano-composite coating on magnesium. Appl Surf Sci 324:393–398.  https://doi.org/10.1016/j.apsusc.2014.10.144 CrossRefGoogle Scholar
  20. 20.
    Sadeghzadeh-Attar A, AyubiKia G, Ehteshamzadeh M (2016) Improvement in tribological behavior of novel sol-enhanced electroless Ni-P-SiO2 nanocomposite coatings. Surf Coat Technol 307:837–848.  https://doi.org/10.1016/j.surfcoat.2016.10.026 CrossRefGoogle Scholar
  21. 21.
    Zhou Y, Zhang S, Nie L, Zhu Z, Zhang J, Cao F, Zhang J (2016) Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Trans Nonferrous Metals Soc China 26:2976–2987.  https://doi.org/10.1016/S1003-6326(16)64428-X CrossRefGoogle Scholar
  22. 22.
    Chen W, Gao W, He Y (2010) A novel electroless plating of Ni-P-TiO2 nano-composite coatings. Surf Coat Technol 204:2493–2498.  https://doi.org/10.1016/j.surfcoat.2010.01.032 CrossRefGoogle Scholar
  23. 23.
    Sahoo P, Kalyan Das S (2011) Tribology of electroless nickel coatings – a review. Mater Des 32:1760–1775.  https://doi.org/10.1016/j.matdes.2010.11.013 CrossRefGoogle Scholar
  24. 24.
    ASTM (2017) ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. American Society for Testing and Materials, West ConshohockenGoogle Scholar
  25. 25.
    Novakovic J, Vassiliou P, Samara K, Argyropoulos T (2006) Electroless NiP-TiO2 composite coatings: their production and properties. Surf Coat Technol 201:895–901.  https://doi.org/10.1016/j.surfcoat.2006.01.005 CrossRefGoogle Scholar
  26. 26.
    Crobu M, Scorciapino A, Elsener B, Rossi A (2008) The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys. Electrochim Acta 53:3364–3370.  https://doi.org/10.1016/j.electacta.2007.11.071 CrossRefGoogle Scholar
  27. 27.
    Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126.  https://doi.org/10.1016/j.powtec.2005.08.020 CrossRefGoogle Scholar
  28. 28.
    Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition, 2nd edn. Wiley, New JerseyCrossRefGoogle Scholar
  29. 29.
    Zhang S, Han K, Cheng L (2008) The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings. Surf Coat Technol 202:2807–2812.  https://doi.org/10.1016/j.surfcoat.2007.10.015 CrossRefGoogle Scholar
  30. 30.
    Melnikov ES, Surmeneva M, Tyurin A, Pirozhkova TS, Shuvarin IA, Prymak O, Epple M, Surmenev RA (2017) Improvement of the mechanical properties of AZ91D magnesium alloys by deposition of thin hydroxyapatite film. Nano Hybrids Compos 13:355–361.  https://doi.org/10.4028/www.scientific.net/NHC.13.355 CrossRefGoogle Scholar
  31. 31.
    Zhou Y, Van Petegem S, Segers D, Erb U, Aust KT, Palumbo G (2009) On Young’s modulus and the interfacial free volume in nanostructured Ni-P. Mater Sci Eng A 512:39–44.  https://doi.org/10.1016/j.msea.2009.01.020 CrossRefGoogle Scholar
  32. 32.
    Chen W, He Y, Gao W (2010) Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings. Surf Coat Technol 204:2487–2492.  https://doi.org/10.1016/j.surfcoat.2010.01.036 CrossRefGoogle Scholar
  33. 33.
    Sudagar J, Lian JS, Jiang Q, Jiang ZH, Li GY, Elansezhian R (2012) The performance of surfactant on the surface characteristics of electroless nickel coating on magnesium alloy. Prog Org Coat 74:788–793.  https://doi.org/10.1016/j.porgcoat.2011.10.022 CrossRefGoogle Scholar
  34. 34.
    Makkar P, Agarwala RC, Agarwala V (2014) Wear characteristics of mechanically milled TiO2 nanoparticles incorporated in electroless Ni-P coatings. Adv Powder Technol 25:1653–1660.  https://doi.org/10.1016/j.apt.2014.05.018 CrossRefGoogle Scholar
  35. 35.
    Kundu S, Kalyan Das S, Sahoo P (2019) Friction and wear behavior of electroless Ni-P-W coating exposed to elevated temperature. Surf Interfaces 14:192–207.  https://doi.org/10.1016/j.surfin.2018.12.007 CrossRefGoogle Scholar
  36. 36.
    Mutkule SU, Navale S, Jadhav V, Ambade S, Naushad M, Sagar A, Patil V, Stadler F, Mane R (2017) Solution-processed nickel oxide films and their liquefied petroleum gas sensing activity. J Alloys Compd 695:2008–2015.  https://doi.org/10.1016/j.jallcom.2016.11.037 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMATUniversidad de AntioquiaMedellínColombia
  2. 2.Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño IndustrialUniversidad Pontificia BolivarianaMedellínColombia

Personalised recommendations