Advertisement

Semi-supervised modeling and compensation for the thermal error of precision feed axes

  • Mohan Lei
  • Jun YangEmail author
  • Shuai Wang
  • Liang Zhao
  • Ping Xia
  • Gedong Jiang
  • Xuesong Mei
ORIGINAL ARTICLE
  • 510 Downloads

Abstract

The data-driven modeling of thermal error-temperature relationship is key to achieve ideal compensation effect for precision machine tools. The improvements of the modeling quality are limited only depending on ameliorating the regression algorithm with same training data, and more information must be introduced for further improvements. The thermal error data, in particular for the feed axes, are usually high-cost and scarce, but the temperature data are usually readily available. Here, it is indicated that an extra information, the low-cost unlabeled temperature data which are easily accessible under various operation conditions, can be exploited to enrich the thermal error modeling data for the feed axes. Then the co-training semi-supervised support vector machines for regression (COSVR), which can include the pattern information of the unlabeled data in modeling, is employed to establish the thermal error-temperature model for feed axes. Thermal experiments were conducted on two cases of different axes, and the labeled data of temperature and thermal error and the unlabeled data of only temperature were obtained under different operating speeds. The linear thermal errors were modeled by COSVR using all the data, and by the genetic algorithm SVR (GA-SVR) using only the labeled data, respectively. Comparisons showed that the COSVR model outperformed the GA-SVR model by 11.45% and 34.14% in RMSE on the two axes, respectively, and by 53.03% of maximum thermal error reduction in the compensation.

Keywords

Precision boring machine Feed axes Co-training Semi-supervised support vector machine Unlabeled data 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (51605375), Research Project of State Key Lab of Digital Manufacturing Equipment & Technology DMETKF2019017, Research Project of State Key Laboratory of Mechanical System and Vibration MSV201701, and Natural Science Foundation of Shaanxi (2017JM5081).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mayr J, Jedrzejewski J, Uhlmann E, Donme MA, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wu T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRefGoogle Scholar
  2. 2.
    Li T, Li F, Jiang Y, Wang H (2017) Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining. Int J Adv Manuf Technol 92(9):3073–3092CrossRefGoogle Scholar
  3. 3.
    Wu C, Tang C, Chang C, Shiao Y (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5):681–689CrossRefGoogle Scholar
  4. 4.
    Xiang S, Yang J (2015) Error map construction and compensation of a NC lathe under thermal and load effects. Int J Adv Manuf Technol 79(1):645–655CrossRefGoogle Scholar
  5. 5.
    Kim J, Jeong YH, Cho DW (2004) Thermal behavior of a machine tool equipped with linear motors. Int J Mach Tools Manuf 44(7–8):749–758CrossRefGoogle Scholar
  6. 6.
    Xu ZZ, Choi C, Liang LJ, Li D-y, Lyu SK (2015) Study on a novel thermal error compensation system for high-precision ball screw feed drive (2nd report: experimental verification). Int J Precis Eng Manuf 16(10):2139–2145CrossRefGoogle Scholar
  7. 7.
    Ramesh R, Mannan MA, Poo AN (2003) Thermal error measurement and modelling in machine tools.: part I. influence of varying operating conditions. Int J Mach Tools Manuf 43(4):391–404CrossRefGoogle Scholar
  8. 8.
    Ramesh R, Mannan MA, Poo AN (2003) Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian network—support vector machine model. Int J Mach Tools Manuf 43(4):405–419CrossRefGoogle Scholar
  9. 9.
    Wei X, Gao F, Li Y, Zhang D (2018) Study on optimal independent variables for the thermal error model of CNC machine tools. Int J Adv Manuf Technol 98(1):657–669CrossRefGoogle Scholar
  10. 10.
    Shi H, Ma C, Yang J, Zhao L, Mei X, Gong G (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71CrossRefGoogle Scholar
  11. 11.
    Shi H, Zhang D, Yang J, Ma C, Mei X, Gong G (2016) Experiment-based thermal error modeling method for dual ball screw feed system of precision machine tool. Int J Adv Manuf Technol 82(9):1693–1705CrossRefGoogle Scholar
  12. 12.
    Liu K, Liu H, Li T, Wang Y, Sun M, Wu Y (2017) Prediction of comprehensive thermal error of a preloaded ball screw on a gantry milling machine. J Manuf Sci Eng 140(2):021004–021004–9Google Scholar
  13. 13.
    Liu K, Wang Y, Yu L, Li T, Liu H (2018) Research on thermo-mechanical coupled experiments and thermal deformation evolution of preloaded screw. Int J Adv Manuf Technol 99(9):2441–2450CrossRefGoogle Scholar
  14. 14.
    Jin C, Wu B, Hu Y (2011) Wavelet neural network based on NARMA-L2 model for prediction of thermal characteristics in a feed system. Chin J Mech Eng Engl Ed 24(1):33CrossRefGoogle Scholar
  15. 15.
    Bennett KP, Demiriz A (1999) Semi-supervised support vector machines. in Advances in Neural Information processing systemsGoogle Scholar
  16. 16.
    Ding S, Zhu Z, Zhang X (2017) An overview on semi-supervised support vector machine. Neural Comput & Applic 28(5):969–978CrossRefGoogle Scholar
  17. 17.
    Zhou ZH, Li M (2005) Semi-supervised regression with co-training. in International Joint Conference on Artificial IntelligenceGoogle Scholar
  18. 18.
    Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vapnik V (2013) The nature of statistical learning theory. Springer science & business mediaGoogle Scholar
  20. 20.
    Drucker H, Burges CJC, Kaufman L, Smola AJ, Vapnik V Support vector regression machinesGoogle Scholar
  21. 21.
    Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126CrossRefGoogle Scholar
  22. 22.
    Wang X, Ma L, Wang X (2010) Apply semi-supervised support vector regression for remote sensing water quality retrieving. in 2010 IEEE International Geoscience and Remote Sensing SymposiumGoogle Scholar
  23. 23.
    Zhou Z, Li M (2007) Semisupervised regression with cotraining-style algorithms. IEEE Trans Knowl Data Eng 19(11):1479–1493CrossRefGoogle Scholar
  24. 24.
    Jiang G, Yang J, Mei X, Xia P, Shi H (2018) Improvement of the regression model for spindle thermal elongation by a boosting-based outliers detection approach. Int J Adv Manuf Technol 99(5):1389–1403Google Scholar
  25. 25.
    Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Comput Stat Data Anal 24(3):372–373MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yang J, Mei X, Feng B, Zhao L, Ma C, Shi H (2015) Experiments and simulation of thermal behaviors of the dual-drive servo feed system. Chin J Mech Eng 28(1):76–87CrossRefGoogle Scholar
  27. 27.
    Yang J, Zhang D, Mei X, Zhao L, Shi H (2015) Thermal error simulation and compensation in a jig-boring machine equipped with a dual-drive servo feed system. Proc Inst Mech Eng B J Eng Manuf 229(1_suppl):43–63CrossRefGoogle Scholar
  28. 28.
    Yang J, Shi H, Feng B, Zhao L, Mei X, Shi H (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5):1005–1017CrossRefGoogle Scholar
  29. 29.
    Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRefGoogle Scholar
  30. 30.
    Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Mohan Lei
    • 1
    • 2
  • Jun Yang
    • 1
    • 3
    Email author
  • Shuai Wang
    • 1
    • 2
  • Liang Zhao
    • 1
    • 2
  • Ping Xia
    • 1
  • Gedong Jiang
    • 1
    • 2
  • Xuesong Mei
    • 1
    • 2
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Shaanxi Key Laboratory of Intelligent RobotsXi’an Jiaotong UniversityXi’anChina
  3. 3.State Key Lab of Digital Manufacturing Equipment & TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations