Advertisement

Effects of silicon carbide contents on microstructure and mechanical properties of spark plasma–sintered titanium-based metal matrix

  • Peter Ifeolu OdetolaEmail author
  • Emmanuel Ajenifuja
  • Abimbola P. I. Popoola
  • Olawale Popoola
ORIGINAL ARTICLE
  • 44 Downloads

Abstract

In this study, TiNiAl-SiC composites (TMCs) containing 1, 3, and 6 wt% SiC were prepared by spark plasma sintering (SPS) process using heating rate of 100 °C/min, at 800 °C, and sintering pressure of 40 MPa, and holding time of 10 min. Phase identification was carried out on TiNiAl-SiC composites by X-ray diffraction technique. Microstructure and elemental analyses were done with a scanning electron microscope (SEM) and energy dispersive X-ray (EDS) spectroscopy. SEM micrographs showed pronounced grain boundary interaction between the SiC and the TiNiAl matrix with increase wt% SiC. The results from the mechanical characterization generally showed enhancement in hardness, tensile strength, yield strength, and wear. At 6 wt% SiC, the optimum values of 2852 MPa, 930.46 MPa, and 673.02 MPa were established for hardness, tensile strength, and yield strength, respectively. Also, TiNiAl-SiC composite with 6 wt% SiC presented the best frictional profile with the highest resisting power due to the lowest friction coefficient of about 0.4, and the wear rate of 2.18 mm3/m. The absence of grooves in the worn morphology also confirmed that it has good tribological properties.

Keywords

Titanium matrix composite Spark plasma sintering Powder processing Aerospace Microstructure Hardness Tensile strength Yield strength Wear 

Notes

Acknowledgements

The authors wish to thank the Tshwane University of Technology, Pretoria, South Africa, for the logistic supports provided during the course of this work. National Research Foundation (NRF) is also acknowledged.

Funding information

This work received financial support from the Tshwane University of Technology, Pretoria, South Africa.

References

  1. 1.
    Duncan RM, Hanson BH (1980) The selection and use of titanium. Oxford University Press for the Design Council, the British Standards Institution and the Council of Engineering Institutions https://trove.nla.gov.au/work/10014269
  2. 2.
    Layens C, Peters M (2003) Titanium and titanium alloys: fundamentals and applications WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  3. 3.
    Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61(3):844–879CrossRefGoogle Scholar
  4. 4.
    Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102(5–8):1689–1701CrossRefGoogle Scholar
  5. 5.
    Emami SM, Salahi E, Zakeri M, Tayebifard SA (2017) Effect of composition on spark plasma sintering of ZrB2–SiC–ZrC nanocomposite synthesized by MASPSyn. Ceram Int 43(1):111–115CrossRefGoogle Scholar
  6. 6.
    Harris GL (Ed.). (1995) Properties of silicon carbide / Gary L. Harris, editor. London: Institution of Electrical Engineers. https://trove.nla.gov.au/work/20545125
  7. 7.
    Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. William AndrewGoogle Scholar
  8. 8.
    Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175(1-3):364–375CrossRefGoogle Scholar
  9. 9.
    Fei NJ, Katgerman L, Kool WH (1994) Production of SiC particulate reinforced aluminium composites by melt spinning. J Mater Sci 29(24):6439–6444CrossRefGoogle Scholar
  10. 10.
    Singla M, Dwivedi DD, Singh L, Chawla V (2009) Development of aluminium based silicon carbide particulate metal matrix composite. J Miner Mater Charact Eng 8(6):455–467Google Scholar
  11. 11.
    Sun C, Song M, Wang Z, He Y (2011) Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J Mater Eng Perform 20(9):1606–1612CrossRefGoogle Scholar
  12. 12.
    Inem B, Pollard G (1993) Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles. J Mater Sci 28(16):4427–4434CrossRefGoogle Scholar
  13. 13.
    Selamat MS, Watson LM, Baker TN (2003) XRD and XPS studies on surface MMC layer of SiC reinforced Ti–6Al–4V alloy. J Mater Process Technol 142(3):725–737CrossRefGoogle Scholar
  14. 14.
    Poletti C, Höltl G (2010) Mechanical properties of particle reinforced titanium and titanium alloys. Kovove Mater 48:87–95Google Scholar
  15. 15.
    Shamsipur A, Kashani-Bozorg SF, Zareie-Hanzaki A (2012) Fabrication of Ti/SiC surface nano-composite layer by friction stir processing. In: International Journal of Modern Physics: Conference Series, vol 5. World Scientific Publishing Company, pp 367–374Google Scholar
  16. 16.
    Ghasali E, Alizadeh M, Pakseresht AH, Ebadzadeh T (2017) Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. J Asian Ceram Soc 5(4):472–478CrossRefGoogle Scholar
  17. 17.
    HariKrishnan PG, Jayakumar K (2019) Synthesis and characterization of TiB 2–SiC ceramic composite produced through spark plasma sintering. In: Advances in materials and metallurgy. Springer, Singapore, pp 127–135CrossRefGoogle Scholar
  18. 18.
    Mampuru KM, Ajenifuja E, Popoola API, Popoola O (2019) Effect of silicon carbide addition on the microstructure, hardness and densification properties of spark plasma sintered Ni-Zn-Al alloy. J King Saud Univ Sci.  https://doi.org/10.1016/j.jksus.2019.01.010
  19. 19.
    Odetola PI, Popoola AP, Ajenifuja E, Popoola O (2019) Effects of temperature on the microstructure and physico-mechanical properties of TiNiAl-SiC composite by spark plasma sintering technique. Materials Research Express  https://doi.org/10.1088/2053-1591/ab16ff CrossRefGoogle Scholar
  20. 20.
    Perera DS, Tokita M, Moricca S (1998) Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing. J Eur Ceram Soc 18(4):401–404CrossRefGoogle Scholar
  21. 21.
    Feng G, Yang Y, Zhao G, Zhang W, Luo X, Huang B (2014) Effect of hot isostatic pressing parameters on the microstructures and grain growth behavior of the matrix of SiCf/Ti-6Al-4V composites. Rare Metal Mater Eng 43(8):1839–1845CrossRefGoogle Scholar
  22. 22.
    Asl MS, Kakroudi MG, Noori S (2015) Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J Alloys Compd 619:481–487CrossRefGoogle Scholar
  23. 23.
    Torizuka S, Sato K, Nishio H, Kishi T (1995) Effect of SiC on interfacial reaction and sintering mechanism of TiB2. J Am Ceram Soc 78(6):1606–1610CrossRefGoogle Scholar
  24. 24.
    James SJ, Venkatesan K, Kuppan P, Ramanujam R (2014) Comparative study of composites reinforced with SiC and TiB2. Procedia Eng 97:1012–1017CrossRefGoogle Scholar
  25. 25.
    Barick P, Chatterjee A, Majumdar B, Saha BP, Mitra R (2018) Comparative evaluations and microstructure: mechanical property relations of sintered silicon carbide consolidated by various techniques. Metall Mater Trans A 49(4):1182–1201CrossRefGoogle Scholar
  26. 26.
    Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16(7):830–849CrossRefGoogle Scholar
  27. 27.
    Abedi M, Moskovskikh DO, Rogachev AS, Mukasyan AS (2016) Spark plasma sintering of titanium spherical particles. Metall Mater Trans B 47(5):2725–2731CrossRefGoogle Scholar
  28. 28.
    Cahoon JR, Broughton WH, Kutzak AR (1971) The determination of yield strength from hardness measurements. Metall Trans A 2(7):1979–1983Google Scholar
  29. 29.
    Krishna SC, Gangwar NK, Jha AK, Pant B (2013) On the prediction of strength from hardness for copper alloys. J Mater 2013:1–6CrossRefGoogle Scholar
  30. 30.
    Barsoum MW (2000) The MN+ 1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog Solid State Chem 28(1-4):201–281CrossRefGoogle Scholar
  31. 31.
    Ho-Duc LH (2002) Synthesis and characterization of the properties of Ti3SiC2/SiC and Ti3SiC2/TiC compositesGoogle Scholar
  32. 32.
    Barsoum MW, El-Raghy T (1996) Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. Journal of the American Ceramic Society, 79:1953–1956.  https://doi.org/10.1111/j.1151-2916.1996.tb08018.x CrossRefGoogle Scholar
  33. 33.
    El-Raghy T, Barsoum MW (1999) Processing and mechanical properties of Ti3SiC2: I, reaction path and microstructure evolution. J Am Ceram Soc 82(10):2849–2854CrossRefGoogle Scholar
  34. 34.
    Kim JI, Kim WJ, Choi DJ, Park JY, Ryu WS (2005) Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites. Carbon 43(8):1749–1757CrossRefGoogle Scholar
  35. 35.
    Sedláček J, Galusek D, Riedel R, Hoffmann MJ (2011) Sinter-HIP of polymer-derived Al2O3–SiC composites with high SiC contents. Mater Lett 65(15-16):2462–2465CrossRefGoogle Scholar
  36. 36.
    Mogilevsky P, Mah TI, Parthasarathy TA, Cooke CM (2006) Toughening of SiC with Ti3SiC2 particles. J Am Ceram Soc 89(2):633–637CrossRefGoogle Scholar
  37. 37.
    Chen Y, Shi X, Zhai W, Deng X, Yan Z, Liu X, Lu G, Zhou H (2018) Tribological performance of Ti3SiC2 enhanced Ni3Al matrix composites. Mater Res Express 5(6):066528CrossRefGoogle Scholar
  38. 38.
    Liu WY, Zhang JB, Jin YM, Hu TT, Chen TT, Xiao XP, Yan LM (2017) Microstructure and properties of Ti3SiC2/Al–Si composites synthesized by spark plasma sintering. Mater Res Express 4(11):116521CrossRefGoogle Scholar
  39. 39.
    Cui H, Zhang Y, Zhang G, Liu W, Song X, Wei N (2016) Pore and microstructure change induced by SiC whiskers and particles in porous TiB2–TiC–Ti3SiC2 composites. Ceram Int 42(7):8376–8384CrossRefGoogle Scholar
  40. 40.
    Li RT, Dong ZL, Khor KA (2016) Al–Cr–Fe quasicrystals as novel reinforcements in Ti based composites consolidated using high pressure spark plasma sintering. Mater Des 102:255–263CrossRefGoogle Scholar
  41. 41.
    Steinman AE, Corthay S, Firestein KL, Kvashnin DG, Kovalskii AM, Matveev AT, Sorokin PB, Golberg DV, Shtansky DV (2018) Al-based composites reinforced with AlB2, AlN and BN phases: experimental and theoretical studies. Mater Des 141:88–98CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Peter Ifeolu Odetola
    • 1
    Email author
  • Emmanuel Ajenifuja
    • 1
    • 2
    • 3
  • Abimbola P. I. Popoola
    • 1
  • Olawale Popoola
    • 2
  1. 1.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa
  2. 2.Center for Energy and Electric PowerTshwane University of TechnologyPretoriaSouth Africa
  3. 3.Center for Energy Research and DevelopmentObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations