Optimization of the edge effect of 4340 steel specimen heated by induction process with flux concentrators using finite element axis-symmetric simulation and experimental validation

  • Mohamed KhalifaEmail author
  • Noureddine Barka
  • Jean Brousseau
  • Philippe Bocher


This research is performed by 2D axis-symmetric finite element simulation based on the coupling of electromagnetic fields and heat transfer applied on 4340 steel specimen with flux concentrators heated by induction process. The model is built using COMSOL software based on an adequate formulation taking into account the material properties and process parameters. The obtained induced currents and temperature distributions are analyzed versus the geometrical dimensions of the model. The originality of this paper lies in the exploitation of simulation data using classical modeling and the optimization techniques to optimize the hardness profile according to geometrical factors. The proposed method is based on finite element simulations and adequate objective function able to converge to the optimal linear hardness profile. The results demonstrate that the final hardness profile can be quasi-uniform with a narrow flux concentrator gap when the gap between the master part and the inductor is larger. This overall study allows a good exploration of hardness profile linearity under various geometrical dimensions and permits a good comprehension of induction heating with flux concentrator behavior.


Induction heating 4340 steel disk 2D model High frequency Flux concentrators Optimization 



  1. 1.
    Savaria V, et Bridier F, Bocher P (2016) Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int J Fatigue 85:70–84CrossRefGoogle Scholar
  2. 2.
    Withers PJ (2007) Residual stress and its role in failure. Rep Prog Phys 70:2211–2264CrossRefGoogle Scholar
  3. 3.
    Dmytro RC, Krause FN, Friedrich-Wilhelm B, Lorenz G, Bernd B (2012) Investigation of the surface residual stresses in spray cooled induction hardened gearwheels. Int J Mater Res 103(1):73–79CrossRefGoogle Scholar
  4. 4.
    James MN, Hattingh DG, Asquith D, et Newby M, Doubell P (2016) Applications of residual stress in combatting fatigue and fracture. Procedia Structural Integrity 2:11–25CrossRefGoogle Scholar
  5. 5.
    Besserer H-B, Dalinger A, Rodman D, Nürnberger F, Hildenbrand P, et Merklein M, Maier HJ (2016) Induction heat treatment of sheet-bulk metal-formed parts assisted by water-air spray cooling. Steel Res Int 87:1220–1227CrossRefGoogle Scholar
  6. 6.
    Coupard D, Palin-luc T, Bristiel P, Ji V, Dumas C (2008) Residual stresses in surface induction hardening of steels: comparison between experiment and simulation. Mater Sci Eng A 487:328–339CrossRefGoogle Scholar
  7. 7.
    Deng D (2009) FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des 30:359–366CrossRefGoogle Scholar
  8. 8.
    Ivanov D, Markegård L, Asperheim JI, Kristoffersen H (2013) Simulation of stress and strain for induction-hardening applications. J Mater Eng Perform 22:3258–3268CrossRefGoogle Scholar
  9. 9.
    Meo M, Vignjevic R (2003) Finite element analysis of residual stress induced by shot peening process. Adv Eng Softw 34:569–575CrossRefGoogle Scholar
  10. 10.
    Haimbaugh RE (2015) Practical induction heat treating. ASM International, Geauga CountyGoogle Scholar
  11. 11.
    Hömberg D, Liu Q, Montalvo-Urquizo J, Nadolski D, Petzold T, Schmidt A, Schulz A (2016) Simulation of multi-frequency-induction-hardening including phase transitions and mechanical effects. Finite Elem Anal Des 121:86–100MathSciNetCrossRefGoogle Scholar
  12. 12.
    Woodard PR, Chandrasekar S, Yang HTY (1999) Analysis of temperature and microstructure in the quenching of steel cylinders. Metall Mater Trans B 30:815–822CrossRefGoogle Scholar
  13. 13.
    Li Z, Ferguson BL, Nemkov V, Goldstein R, et Jackowski J, Fett G (2014) Effect of quenching rate on distortion and residual stresses during induction hardening of a full-float truck axle shaft. J Mater Eng Perform 23:4170–4180CrossRefGoogle Scholar
  14. 14.
    Kristoffersen H, Vomacka P (2001) Influence of process parameters for induction hardening on residual stresses. Mater Des 22(8):637–644CrossRefGoogle Scholar
  15. 15.
    Nemkov V, Goldstein R, Jackowski J, Ferguson L, Li Z (2013) Stress and distortion evolution during induction case hardening of tube. J Mater Eng Perform 22:1826–1832CrossRefGoogle Scholar
  16. 16.
    Komotori J, Shimizu M, et Misaka Y, Kawasaki K (2001) Fatigue strength and fracture mechanism of steel modified by super-rapid induction heating and quenching. Int J Fatigue 23:225–230CrossRefGoogle Scholar
  17. 17.
    Larregain B, Vanderesse N, Bridier F, et Bocher P, Arkinson P (2013) Method for accurate surface temperature measurements during fast induction heating. J Mater Eng Perform 22:1907–1913CrossRefGoogle Scholar
  18. 18.
    Barka N, et Bocher P, Brousseau J (2013) Sensitivity study of hardness profile of 4340 specimen heated by induction process using axisymmetric modeling. Int J Adv Manuf Technol 69:2747–2756CrossRefGoogle Scholar
  19. 19.
    Barka N (2017) Study of the machine parameters effects on the case depths of 4340 spur gear heated by induction—2D model. Int J Adv Manuf Technol 93:1173–1181CrossRefGoogle Scholar
  20. 20.
    Barka N, Chebak A, El Ouafi A, Jahazi M, Menou A (2014) A new approach in optimizing the induction heating process using flux concentrators: application to 4340 steel spur gear. J Mater Eng Perform 23:3092–3099CrossRefGoogle Scholar
  21. 21.
    Chandler H (1994) Heat treater’s guide: practices and procedures for irons and steels. ASM InternationalGoogle Scholar
  22. 22.
    Senhaji A (2017) Simulation numérique de la chauffe par induction électromagnétique d’un disque en AISI 4340. École de technologie supérieureGoogle Scholar
  23. 23.
    Floudas CCA, Pardalos PM (2006) Encyclopedia of optimization. Springer-Verlag, BerlinzbMATHGoogle Scholar
  24. 24.
    Wei Z, et Li G, Qi L (2006) New quasi-Newton methods for unconstrained optimization problems. Appl Math Comput 175:1156–1188MathSciNetzbMATHGoogle Scholar
  25. 25.
    Barka N, El Ouafi A, et Bocher P, Brousseau J (2013) Explorative study and prediction of overtempering region of disc heated by induction process using 2D axisymmetric model and experimental tests. Adv Mater Res 658:259–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Mohamed Khalifa
    • 1
    Email author
  • Noureddine Barka
    • 1
  • Jean Brousseau
    • 1
  • Philippe Bocher
    • 2
  1. 1.Département de mathématiques, d’informatique et de génieUniversité du Québec à RimouskiRimouskiCanada
  2. 2.Département de génie mécaniqueÉcole de technologie supérieureMontrealCanada

Personalised recommendations