Advertisement

Dissimilar friction stir welding of thick plate AA5052-AA6061 aluminum alloys: effects of material positioning and tool eccentricity

  • Luqman Hakim Ahmad ShahEmail author
  • Seyedhossein Sonbolestan
  • Abdelbaset R. H. Midawi
  • Scott Walbridge
  • Adrian Gerlich
ORIGINAL ARTICLE
  • 87 Downloads

Abstract

Dissimilar friction stir welding of AA5052-AA6061 was conducted to assess the effect of material positioning on the welds produced using tools with predetermined eccentricity. Microstructural observation, thermal cycle measurement, and mechanical property evaluation was subsequently conducted. Evidence shows that AA6061 is better suited to welding while placed on the advancing side (AS), since better transverse tensile strength (up to 215 MPa) and elongation (up to 7.6%) can be achieved. On the other hand, higher peak temperatures were generally observed in the AS regardless of base material positioning, where peak temperatures of more than 350 °C were recorded by the thermocouple located closest to the stir zone. Metallurgical analysis reveals that tool eccentricity enhances the AS material flow in the stir zone but limits dissimilar material mixing.

Keywords

Aluminum alloy Dissimilar welding Friction stir welding Thermal cycle Microstructure Mechanical characterization 

Notes

Acknowledgments

The authors would like to acknowledge Dr. Shahrzad Esmaeili for her expert insight on the topic.

Funding information

This study was financially supported by the National Science and Engineering Research Council (NSERC), Ministry of Higher Education Malaysia, and Universiti Malaysia Pahang.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ma ZY, Feng AH, Chen DL, Shen J (2018) Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit Rev Solid State Mater Sci 43:269–333.  https://doi.org/10.1080/10408436.2017.1358145 CrossRefGoogle Scholar
  2. 2.
    Kou S (2003) The influence of the hydrated metal cations binding to adenine-N7 or adenine-N3 on the hydrogen bonding in adenine–thymine base pair: A comparative study. In: Welding metallurgy. 2nd Editio. John Wiley & Sons, New Jersey, USA.  https://doi.org/10.1016/j.theochem.2007.07.017 CrossRefGoogle Scholar
  3. 3.
    Lohwasser D, Chen Z (2010) Friction stir welding: from basics to applications. Woodhead Publishing Limited, Cambridge, EnglandCrossRefGoogle Scholar
  4. 4.
    Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Strauss AM (2014) Friction stir welding: process, automation, and control. J Manuf Process 16:56–73.  https://doi.org/10.1016/j.jmapro.2013.04.002 CrossRefGoogle Scholar
  5. 5.
    de Miranda ACO, Gerlich A, Walbridge S (2015) Aluminum friction stir welds: review of fatigue parameter data and probabilistic fracture mechanics analysis. Eng Fract Mech 147:243–260.  https://doi.org/10.1016/j.engfracmech.2015.09.007 CrossRefGoogle Scholar
  6. 6.
    Guo S, Shah L, Ranjan R, Walbridge S, Gerlich A (2018) Effect of quality control parameter variations on the fatigue performance of aluminum friction stir welded joints. Int J Fatigue 118:150–161.  https://doi.org/10.1016/j.ijfatigue.2018.09.004 CrossRefGoogle Scholar
  7. 7.
    Dickerson TL, Przydatek J (2003) Fatigue of friction stir welds in aluminium alloys that contain root flaws. Int J Fatigue 25:1399–1409.  https://doi.org/10.1016/S0142-1123(03)00060-4 CrossRefGoogle Scholar
  8. 8.
    Kadlec M, Ru°žek R, Nováková L. Mechanical behaviour of AA 7475 friction stir welds with the kissing bond defect. Int J Fatigue 2015;74:7–19. doi: https://doi.org/10.1016/j.ijfatigue.2014.12.011.CrossRefGoogle Scholar
  9. 9.
    Zhou C, Yang X, Luan G (2006) Effect of kissing bond on fatigue behavior of friction stir welds on Al 5083 alloy. J Mater Sci 41:2771–2777.  https://doi.org/10.1007/s10853-006-6337-x CrossRefGoogle Scholar
  10. 10.
    Zhou C, Yang X, Luan G (2006) Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys. Mater Sci Eng A 418:155–160.  https://doi.org/10.1016/j.msea.2005.11.042 CrossRefGoogle Scholar
  11. 11.
    James MN, Hattingh DG, Bradley GR (2003) Weld tool travel speed effects on fatigue life of friction stir welds in 5083 aluminium. Int J Fatigue 25:1389–1398.  https://doi.org/10.1016/S0142-1123(03)00061-6 CrossRefGoogle Scholar
  12. 12.
    James MN, Bradley GR, Lombard H, Hattingh DG (2005) The relationship between process mechanisms and crack paths in friction stir welded 5083-H321 and 5383-H321 aluminium alloys. Fatigue Fract Eng Mater Struct 28:245–256.  https://doi.org/10.1111/j.1460-2695.2004.00830.x CrossRefGoogle Scholar
  13. 13.
    Okura I, Hagisawa N, Naruo M, Toda H (2003) Fatigue behavior of aluminum deck fabricated by friction stir welding. Struct Eng Earthq Eng 20:55–67CrossRefGoogle Scholar
  14. 14.
    Ranjan R, Carlos de Oliveira Miranda A, Hui Guo S, Walbridge S, Gerlich A. Fatigue analysis of friction stir welded butt joints under bending and tension load. Eng Fract Mech 2018;206:34–45. doi: https://doi.org/10.1016/j.engfracmech.2018.11.041.CrossRefGoogle Scholar
  15. 15.
    Shah LH, Guo S, Walbridge S, Gerlich A (2018) Effect of tool eccentricity on the properties of friction stir welded AA6061 aluminum alloys. Manuf Lett 15:14–17.  https://doi.org/10.1016/j.mfglet.2017.12.019 CrossRefGoogle Scholar
  16. 16.
    Reynolds AP (2000) Visualisation of material flow in autogenous friction stir welds. Sci Technol Weld Join 5:120–124.  https://doi.org/10.1179/136217100101538119 CrossRefGoogle Scholar
  17. 17.
    Dickerson T, Shercliff HR, Schmidt H (2003) A weld marker technique for flow visualization in friction stir welding. 4th Int Symp Frict Stir Weld:14–16.  https://doi.org/10.1007/s00227-003-1132-6
  18. 18.
    Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32:2879–2884.  https://doi.org/10.1007/s11661-001-1038-1 CrossRefGoogle Scholar
  19. 19.
    Schmidt HNB, Dickerson TL, Hattel JH (2006) Material flow in butt friction stir welds in AA2024-T3. Acta Mater 54:1199–1209.  https://doi.org/10.1016/j.actamat.2005.10.052 CrossRefGoogle Scholar
  20. 20.
    Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Flow patterns during friction stir welding. Mater Charact 49:95–101.  https://doi.org/10.1016/S1044-5803(02)00362-5 CrossRefGoogle Scholar
  21. 21.
    Lorrain O, Favier V, Zahrouni H, Lawrjaniec D (2010) Understanding the material flow path of friction stir welding process using unthreaded tools. J Mater Process Technol 210:603–609.  https://doi.org/10.1016/j.jmatprotec.2009.11.005 CrossRefGoogle Scholar
  22. 22.
    Qin DQ, Fu L, Shen ZK 2019. Visualisation and numerical simulation of material flow behaviour during high-speed FSW process of 2024 aluminium alloy thin plateCrossRefGoogle Scholar
  23. 23.
    Liu XC, Sun YF, Morisada Y, Fujii H (2018) Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol 252:643–651.  https://doi.org/10.1016/j.jmatprotec.2017.10.033 CrossRefGoogle Scholar
  24. 24.
    Gulbudak M, Bozkurt Y (2017) The effect of process parameters on the material position of dissimilar friction stir welded AA2024-T3 / 5754-H22 joints. Kov Mater 55:21–31Google Scholar
  25. 25.
    Moradi MM, Jamshidi Aval H, Jamaati R, Amirkhanlou S, Ji S (2018) Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J Manuf Process 32:1–10.  https://doi.org/10.1016/j.jmapro.2018.01.016 CrossRefGoogle Scholar
  26. 26.
    Amancio-Filho ST, Sheikhi S, dos Santos JF, Bolfarini C (2008) Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. J Mater Process Technol 206:132–142.  https://doi.org/10.1016/j.jmatprotec.2007.12.008 CrossRefGoogle Scholar
  27. 27.
    Scialpi A, De Filippis LAC, Cavaliere P (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Des 28:1124–1129.  https://doi.org/10.1016/j.matdes.2006.01.031 CrossRefGoogle Scholar
  28. 28.
    Izadi H, Fallu J, Abdel-Gwad A, Liyanage T, Gerlich AP (2013) Analysis of tool geometry in dissimilar Al alloy friction stir welds using optical microscopy and serial sectioning. Sci Technol Weld Join 18:307–313.  https://doi.org/10.1179/1362171813Y.0000000107 CrossRefGoogle Scholar
  29. 29.
    Ouyang JH, Kovacevic R (2002) Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys. J Mater Eng Perform 11:51–63CrossRefGoogle Scholar
  30. 30.
    Cavaliere P, De Santis A, Panella F, Squillace A (2009) Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater Des 30:609–616.  https://doi.org/10.1016/j.matdes.2008.05.044 CrossRefGoogle Scholar
  31. 31.
    Giraud L, Robe H, Claudin C, Desrayaud C, Bocher P, Feulvarch E (2016) Investigation into the dissimilar friction stir welding of AA7020-T651 and AA6060-T6. J Mater Process Technol 235:220–230.  https://doi.org/10.1016/j.jmatprotec.2016.04.020 CrossRefGoogle Scholar
  32. 32.
    Rodriguez RI, Jordon JB, Allison PG, Rushing T, Garcia L (2015) Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Mater Des 83:60–65.  https://doi.org/10.1016/j.matdes.2015.05.074 CrossRefGoogle Scholar
  33. 33.
    Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J (2014) Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des 56:185–192.  https://doi.org/10.1016/j.matdes.2013.10.082 CrossRefGoogle Scholar
  34. 34.
    Gopkalo O, Liu X, Long F, Booth M, Gerlich AP, Diak BJ (2019) Non-isothermal thermal cycle process model for predicting post-weld hardness in friction stir welding of dissimilar age-hardenable aluminum alloys. Mater Sci Eng A 754:205–215.  https://doi.org/10.1016/j.msea.2019.03.025 CrossRefGoogle Scholar
  35. 35.
    Rodriguez RI, Jordon JB, Allison PG, Rushing TW, Garcia L (2019) Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Mater Sci Eng A 742:255–268.  https://doi.org/10.1016/j.msea.2018.11.020 CrossRefGoogle Scholar
  36. 36.
    Barbini A, Carstensen J, dos Santos J (2018) Influence of alloys position, rolling and welding directions on properties of AA2024/AA7050 dissimilar butt weld obtained by friction stir welding. Metals (Basel) 8:202.  https://doi.org/10.3390/met8040202 CrossRefGoogle Scholar
  37. 37.
    Khodir SA, Shibayanagi T (2007) Dissimilar friction stir welded joints between 2024-T3 aluminum alloy and AZ31 magnesium alloy. Mater Trans 48:2501–2505.  https://doi.org/10.2320/matertrans.MRA2007093 CrossRefGoogle Scholar
  38. 38.
    Kumar RD, Hassan MSIU, Muthukumaran S (2019) Single and multi-response optimization and validation of mechanical properties in dissimilar friction stir welded AA2219-T87 and AA7075-T73 Alloys using T-GRA. Exp Tech 43:245–259CrossRefGoogle Scholar
  39. 39.
    Cavaliere P, Nobile R, Panella FW, Squillace A (2006) Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding. Int J Mach Tools Manuf 46:588–594.  https://doi.org/10.1016/j.ijmachtools.2005.07.010 CrossRefGoogle Scholar
  40. 40.
    Kishore VR, Arun J, Padmanabhan R, Balasubramanian V (2015) Parametric studies of dissimilar friction stir welding using computational fluid dynamics simulation. Int J Adv Manuf Technol 80:91–98.  https://doi.org/10.1007/s00170-015-6995-4 CrossRefGoogle Scholar
  41. 41.
    Cavaliere P, Panella F (2008) Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding. J Mater Process Technol 206:249–255.  https://doi.org/10.1016/j.jmatprotec.2007.12.036 CrossRefGoogle Scholar
  42. 42.
    Bahemmat P, Haghpanahi M (2012) Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation. Int J Adv Manuf Technol 59:939–953.  https://doi.org/10.1007/s00170-011-3547-4 CrossRefGoogle Scholar
  43. 43.
    Silva AAM, Arruti E, Janeiro G, Aldanondo E, Alvarez P, Echeverria A (2011) Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater Des 32:2021–2027.  https://doi.org/10.1016/j.matdes.2010.11.059 CrossRefGoogle Scholar
  44. 44.
    Tang J, Shen Y (2016) Numerical simulation and experimental investigation of friction stir lap welding between aluminum alloys AA2024 and AA7075. J Alloys Compd 666:493–500.  https://doi.org/10.1016/j.jallcom.2016.01.138 CrossRefGoogle Scholar
  45. 45.
    Zaman N, Noor A, Khan ZA, Mukhopadhyay AK (2017) Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J Alloys Compd 695:2902–2908.  https://doi.org/10.1016/j.jallcom.2016.11.389 CrossRefGoogle Scholar
  46. 46.
    Niu PL, Li WY, Li N, Xu YX, Chen DL (2019) Exfoliation corrosion of friction stir welded dissimilar 2024-to-7075 aluminum alloys. Mater Charact 147:93–100.  https://doi.org/10.1016/j.matchar.2018.11.002 CrossRefGoogle Scholar
  47. 47.
    Wang B, Lei BB, Zhu JX, Feng Q, Wang L, Wu D (2015) EBSD study on microstructure and texture of friction stir welded AA5052-O and AA6061-T6 dissimilar joint. Mater Des 87:593–599.  https://doi.org/10.1016/j.matdes.2015.08.060 CrossRefGoogle Scholar
  48. 48.
    Park S-K, Hong S-T, Park J-H, Park K-Y, Kwon Y-J, Son H-J (2010) Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys. Sci Technol Weld Join 15:331–336.  https://doi.org/10.1179/136217110X12714217309696 CrossRefGoogle Scholar
  49. 49.
    RajKumar V, VenkateshKannan M, Sadeesh P, Arivazhagan N, Devendranath RK (2014) Studies on effect of tool design and welding parameters on the friction stir welding of dissimilar aluminium alloys AA 5052 - AA 6061. Procedia Eng 75:93–97.  https://doi.org/10.1016/j.proeng.2013.11.019 CrossRefGoogle Scholar
  50. 50.
    Palanivel R, Koshy Mathews P, Murugan N, Dinaharan I (2012) Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater Des 40:7–16.  https://doi.org/10.1016/j.matdes.2012.03.027 CrossRefGoogle Scholar
  51. 51.
    Zaman N, Noor A, Khan ZA, Shihab SK (2015) Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J Alloys Compd 648:360–367.  https://doi.org/10.1016/j.jallcom.2015.06.246 CrossRefGoogle Scholar
  52. 52.
    Chen Y, Wang H, Li H, Wang X, Ding H, Zhao J (2019) Investigation into the dissimilar friction stir welding of AA5052 and AA6061 aluminum alloys using pin-eccentric stir tool. Metals (Basel) 9:718CrossRefGoogle Scholar
  53. 53.
    Tayebi P, Fazli A, Asadi P, Soltanpour M (2019) Formability analysis of dissimilar friction stir welded AA 6061 and AA 5083 blanks by SPIF process. CIRP J Manuf Sci Technol 25:50–68.  https://doi.org/10.1016/j.cirpj.2019.02.002 CrossRefGoogle Scholar
  54. 54.
    Peng G, Yan Q, Hu J, Chen P, Chen Z, Zhang T (2019) Effect of forced air cooling on the microstructures, tensile strength, and hardness distribution of dissimilar friction stir welded AA5A06-AA6061 joints. Metals (Basel) 9:304.  https://doi.org/10.3390/met9030304 CrossRefGoogle Scholar
  55. 55.
    Sasikumar A, Gopi S, Mohan DG (2019) Effect of magnesium and chromium fillers on the microstructure and tensile strength of friction stir welded dissimilar aluminium alloys. Mater Res Express 6:086580CrossRefGoogle Scholar
  56. 56.
    Verma S, Kumar V (2018) Investigation of microhardness and microstructure using friction stir welding of dissimilar aluminium alloys. J Commun Eng Syst 8:37–44Google Scholar
  57. 57.
    Ilangovan M, Rajendra Boopathy S, Balasubramanian V (2015) Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints. Def Technol 11:174–184.  https://doi.org/10.1016/j.dt.2015.01.004 CrossRefGoogle Scholar
  58. 58.
    Selamat NFM, Baghdadi AH, Sajuri Z, Kokabi AH (2016) Friction stir welding of similar and dissimilar aluminium alloys for automotive applications. Int J Automot Mech Eng 13:3401–3412.  https://doi.org/10.15282/ijame.13.2.2016.9.0281 CrossRefGoogle Scholar
  59. 59.
    Ahmadnia M, Shahraki S, Kamarposhti MA (2016) Experimental studies on optimized mechanical properties while dissimilar joining AA6061 and AA5010 in a friction stir welding process. Int J Adv Manuf Technol 87:2337–2352.  https://doi.org/10.1007/s00170-016-8636-y CrossRefGoogle Scholar
  60. 60.
    Peel MJ, Steuwer A, Withers PJ, Dickerson T, Shi Q, Shercliff H (2006) Dissimilar friction stir welds in AA5083-AA6082. Part I: process parameter effects on thermal history and weld properties. Metall Mater Trans A Phys Metall Mater Sci 37:2183–2193.  https://doi.org/10.1007/BF02586138 CrossRefGoogle Scholar
  61. 61.
    Steuwer A, Peel MJ, Withers PJ (2006) Dissimilar friction stir welds in AA5083-AA6082: the effect of process parameters on residual stress. Mater Sci Eng A 441:187–196.  https://doi.org/10.1016/j.msea.2006.08.012 CrossRefGoogle Scholar
  62. 62.
    Shigematsu I, Kwon YJ, Suzuki K, Imai T, Saito N (2003) Joining of 5083 and 6061 aluminium alloys by friction stir welding. J Mater Sci Lett 22:353–356CrossRefGoogle Scholar
  63. 63.
    Jamshidi Aval H, Serajzadeh S, Kokabi AH, Loureiro A (2011) Effect of tool geometry on mechanical and microstructural behaviours in dissimilar friction stir welding of AA 5086–AA 6061. Sci Technol Weld Join 16:597–604.  https://doi.org/10.1179/1362171811Y.0000000044 CrossRefGoogle Scholar
  64. 64.
    Jamshidi Aval H, Serajzadeh S, Kokabi AH (2011) Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086-AA6061. J Mater Sci 46:3258–3268.  https://doi.org/10.1007/s10853-010-5213-x CrossRefGoogle Scholar
  65. 65.
    Krishnan KN (2002) On the formation of onion rings in friction stir welds. Mater Sci Eng A 327:246–251.  https://doi.org/10.1016/S0921-5093(01)01474-5 CrossRefGoogle Scholar
  66. 66.
    Shah LH, Othman NH, Gerlich A (2018) Review of research progress on aluminium–magnesium dissimilar friction stir welding. Sci Technol Weld Join 23:256–270.  https://doi.org/10.1080/13621718.2017.1370193 CrossRefGoogle Scholar
  67. 67.
    Simar A, Avettand-Fènoël MN (2017) State of the art about dissimilar metal friction stir welding. Sci Technol Weld Join 22:389–403.  https://doi.org/10.1080/13621718.2016.1251712 CrossRefGoogle Scholar
  68. 68.
    Palanivel R, Koshy Mathews P, Dinaharan I, Murugan N (2014) Mechanical and metallurgical properties of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Trans Nonferrous Metals Soc China 24:58–65.  https://doi.org/10.1016/S1003-6326(14)63028-4 CrossRefGoogle Scholar
  69. 69.
    Sundararajan G, Tirupataiah Y (1994) The hardness-flow stress correlation in metallic materials. Bull Mater Sci 17:747–770CrossRefGoogle Scholar
  70. 70.
    Kaufman JG (1999) Properties of aluminum alloys: tensile, creep and fatigue data at high and low temperatures. Ohio, USA, ASM InternationalGoogle Scholar
  71. 71.
    Lee W, Yeon Y, Jung S (2003) The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials. Scr Mater 49:423–428.  https://doi.org/10.1016/S1359-6462(03)00301-4 CrossRefGoogle Scholar
  72. 72.
    Guo J, Gougeon P, Chen X (2012) Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B 4 C MMC and AA6063 alloy. Mater Sci Eng A 553:149–156.  https://doi.org/10.1016/j.msea.2012.06.004 CrossRefGoogle Scholar
  73. 73.
    Thibeault F (2012) Numerical and experimental study of friction stir welding (in French). Université du Québec à ChicoutimiGoogle Scholar
  74. 74.
    Qin G, Su Y, Wang S (2014) Microstructures and properties of welded joint of aluminum alloy to galvanized steel by Nd:YAG laser + MIG arc hybrid brazing-fusion welding. Trans Nonferrous Metals Soc China 24:989–995.  https://doi.org/10.1016/S1003-6326(14)63153-8 CrossRefGoogle Scholar
  75. 75.
    Wang X, Pan Y, Lados DA (2018) Friction stir welding of dissimilar Al/Al and Al/Non-Al alloys: a review. Metall Mater Trans B Process Metall Mater Process Sci 49:2097–2117.  https://doi.org/10.1007/s11663-018-1290-z CrossRefGoogle Scholar
  76. 76.
    Martinez N, Kumar N, Mishra RS, Doherty KJ (2017) Microstructural variation due to heat gradient of a thick friction stir welded aluminum 7449 alloy. J Alloys Compd 713:51–63.  https://doi.org/10.1016/j.jallcom.2017.04.147 CrossRefGoogle Scholar
  77. 77.
    Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing: science and engineering. Springer International Publishing, Switzerland.  https://doi.org/10.1007/978-3-319-07043-8 CrossRefGoogle Scholar
  78. 78.
    Schneider J, Nunes AC (2004) Characterization of plastic flow and resulting microtextures in a friction stir weld. Metall Mater Trans B Process Metall Mater Process Sci 35:777–783.  https://doi.org/10.1007/s11663-004-0018-4 CrossRefGoogle Scholar
  79. 79.
    Schneider J, Beshears R, Nunes AC (2006) Interfacial sticking and slipping in the friction stir welding process. Mater Sci Eng A 435–436:297–304.  https://doi.org/10.1016/j.msea.2006.07.082 CrossRefGoogle Scholar
  80. 80.
    Silva ACF, De Backer J, Bolmsjö G (2017) Temperature measurements during friction stir welding. Int J Adv Manuf Technol 88:2899–2908.  https://doi.org/10.1007/s00170-016-9007-4 CrossRefGoogle Scholar
  81. 81.
    Hwang Y, Kang Z, Chiou Y, Hsu H (2008) Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. Int J Mach Tools Manuf 48:778–787.  https://doi.org/10.1016/j.ijmachtools.2007.12.003 CrossRefGoogle Scholar
  82. 82.
    Reynolds AP (2008) Flow visualization and simulation in FSW. Scr Mater 58:338–342.  https://doi.org/10.1016/j.scriptamat.2007.10.048 CrossRefGoogle Scholar
  83. 83.
    Ardell AJ (1985) Precipitation hardening. Metall Trans A 16:2131–2165.  https://doi.org/10.1007/BF02670416 CrossRefGoogle Scholar
  84. 84.
    Tang W, Guo X, McClure JC, Murr LE, Nunes A (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172.  https://doi.org/10.1106/55TF-PF2G-JBH2-1Q2B CrossRefGoogle Scholar
  85. 85.
    Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tools Manuf 48:1120–1130.  https://doi.org/10.1016/j.ijmachtools.2008.02.001 CrossRefGoogle Scholar
  86. 86.
    Gerlich A, Su P, North TH (2005) Peak temperatures and microstructures in aluminium and magnesium alloy friction stir spot welds. Sci Technol Weld Join 10:647–652.  https://doi.org/10.1179/174329305X48383 CrossRefGoogle Scholar
  87. 87.
    Malin V (1995) Study of metallurgical phenomena in the HAZ of 6061-T6 aluminum welded joints. Weld Res Suppl:305–318Google Scholar
  88. 88.
    Yutaka SS, Hiroyuki H, Ikeda K, Enomoto M, Jogan S, Hashimoto T (2001) Microtexture in the friction-stir weld of an aluminum alloy. Metall Mater Trans A Phys Metall Mater Sci 32:941–948.  https://doi.org/10.1007/s11661-001-0351-z CrossRefGoogle Scholar
  89. 89.
    Woo W, Choo H, Brown DW, Feng Z (2007) Influence of the tool pin and shoulder on microstructure and natural aging kinetics in a friction-stir-processed 6061-T6 aluminum alloy. Metall Mater Trans A Phys Metall Mater Sci 38:69–76.  https://doi.org/10.1007/s11661-006-9034-0 CrossRefGoogle Scholar
  90. 90.
    Frigaard Ø, Grong Ø, Midling OT (2001) A process model for friction stir welding of age hardening aluminum alloys. Metall Mater Trans A 32:1189–1200.  https://doi.org/10.1007/s11661-001-0128-4 CrossRefGoogle Scholar
  91. 91.
    Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51:4791–4801.  https://doi.org/10.1016/S1359-6454(03)00319-7 CrossRefGoogle Scholar
  92. 92.
    Cottrell AH (1953) LXXXVI . A note on the Portevin-Le Chatelier effect. London, Edinburgh. Dublin Philos Mag J Sci 44:829–832.  https://doi.org/10.1080/14786440808520347 CrossRefGoogle Scholar
  93. 93.
    Coër J, Manach PY, Laurent H, Oliveira MC, Menezes LF (2013) Piobert – Lüders plateau and Portevin – Le Chatelier effect in an Al – Mg alloy in simple shear. Mech Res Commun 48:1–7.  https://doi.org/10.1016/j.mechrescom.2012.11.008 CrossRefGoogle Scholar
  94. 94.
    Halim H, Wilkinson DS, Niewczas M (2007) The Portevin – Le Chatelier ( PLC ) effect and shear band formation in an AA5754 alloy. Acta Mater 55:4151–4160.  https://doi.org/10.1016/j.actamat.2007.03.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Faculty of Mechanical and Manufacturing EngineeringUniversiti Malaysia PahangPekanMalaysia
  3. 3.Department of Civil and Environmental EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations