Advertisement

Study of the structure and phase composition of laser welded joints of Al-Cu-Li alloy under different heat treatment conditions

  • Alexandr MalikovEmail author
  • Natalia Bulina
  • Marat Sharafutdinov
  • Anatoliy Orishich
ORIGINAL ARTICLE
  • 6 Downloads

Abstract

This paper explores the structure and phase composition of laser welded joints of Al-Cu-Li alloy without and after post heat treatment (annealing, quenching, and artificial aging). Changes in the structure and phase composition of welds and the base alloy before and after heat treatment are studied using scanning electron microscopy, X-ray diffractometry, and synchrotron radiation diffraction. The investigation results have shown that the formed agglomerates of intermetallic particles are mainly represented by the Т1(Al2CuLi) phase. The change in the strength of the Al-Cu-Li alloy samples after laser welding and heat treatment is not due to the absence or presence of the strengthening Т1(Al2CuLi) intermetallic phase but rather due to the different localization of particles of this phase in the weld joint. The segregation of the phase at dendritic grain boundaries leads to a significant strength decrease, and, vice versa, its homogeneous distribution in the solid solution achieved by post heat treatment (annealing, quenching, and artificial aging) increases the strength of the laser welded samples.

Keywords

Laser welding Aluminum-lithium alloy Electron microscopy Synchrotron radiation X-ray diffractometry Mechanical characteristics 

Notes

Funding information

This work was supported by the Russian Science Foundation (grant no. 17-79-20139).

References

  1. 1.
    Rioja RJ, Liu J (2012) The evolution of Al-Li base products for aerospace and space applications. Metall Mater Trans A Phys Metall Mater Sci 43:3325–3337.  https://doi.org/10.1007/s11661-012-1155-z CrossRefGoogle Scholar
  2. 2.
    Abd El-Aty A, Xu Y, Guo X et al (2018) Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J Adv Res 10:49–67.  https://doi.org/10.1016/j.jare.2017.12.004 CrossRefGoogle Scholar
  3. 3.
    Betsofen SY, Antipov VV, Knyazev MI (2016) Al–Cu–Li and Al–Mg–Li alloys: phase composition, texture, and anisotropy of mechanical properties (review). Russ Metall 2016:326–341.  https://doi.org/10.1134/S0036029516040042 CrossRefGoogle Scholar
  4. 4.
    Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871.  https://doi.org/10.1016/j.matdes.2013.12.002 CrossRefGoogle Scholar
  5. 5.
    Starke EA (2014) Historical development and present status of aluminum–lithium alloys. Aluminum-lithium Alloy 3–26.  https://doi.org/10.1016/B978-0-12-401698-9.00001-X
  6. 6.
    Dorin T, Vahid A, Lamb J (2018) Aluminium lithium alloys. Fundam Alum Metall 387–438.  https://doi.org/10.1016/B978-0-08-102063-0.00011-4
  7. 7.
    Hu YN, Wu SC, Chen L (2019) Review on failure behaviors of fusion welded high-strength Al alloys due to fine equiaxed zone. Eng Fract Mech 208:45–71.  https://doi.org/10.1016/J.ENGFRACMECH.2019.01.013 CrossRefGoogle Scholar
  8. 8.
    Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum-lithium alloys. J Manuf Process 16:166–175.  https://doi.org/10.1016/j.jmapro.2013.10.005 CrossRefGoogle Scholar
  9. 9.
    Kashaev N, Ventzke V, Çam G (2018) Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. J Manuf Process 36:571–600.  https://doi.org/10.1016/j.jmapro.2018.10.005 CrossRefGoogle Scholar
  10. 10.
    Çam G, İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91:1851–1866.  https://doi.org/10.1007/s00170-016-9861-0 CrossRefGoogle Scholar
  11. 11.
    Dittrich D, Standfuss J, Liebscher J, Brenner B, Beyer E (2011) Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design – first results. Phys Procedia 12:113–122.  https://doi.org/10.1016/j.phpro.2011.03.015 CrossRefGoogle Scholar
  12. 12.
    Enz J, Carrarin C, Riekehr S, Ventzke V, Kashaev N (2018) Hot cracking behaviour of an autogenously laser welded Al-Cu-Li alloy. Int J Adv Manuf Technol 95:299–310.  https://doi.org/10.1007/s00170-017-1197-x CrossRefGoogle Scholar
  13. 13.
    Ning J, Jie ZL, Lin BQ et al (2017) Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding. Mater Des 120:144–156.  https://doi.org/10.1016/j.matdes.2017.02.003 CrossRefGoogle Scholar
  14. 14.
    Fu B, Qin G, Meng X, Ji Y, Zou Y, Lei Z (2014) Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser. Mater Sci Eng A 617:1–11.  https://doi.org/10.1016/j.msea.2014.08.038 CrossRefGoogle Scholar
  15. 15.
    Han B, Tao W, Chen Y, Li H (2017) Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: effects of filler elements on microstructure and mechanical properties. Opt Laser Technol 93:99–108.  https://doi.org/10.1016/j.optlastec.2017.02.004 CrossRefGoogle Scholar
  16. 16.
    Gu C, Wei Y, Zhan X, Zhang D, Ren S, Liu H, Li H (2017) Investigation of welding parameters on microstructure and mechanical properties of laser beam-welded joint of 2060 Al–Cu–Li alloy. Int J Adv Manuf Technol 91:771–780.  https://doi.org/10.1007/s00170-016-9806-7 CrossRefGoogle Scholar
  17. 17.
    Oliveira PI, Costa JM, Loureiro A (2018) Effect of laser beam welding parameters on morphology and strength of dissimilar AA2024/AA7075 T-joints. J Manuf Process 35:149–160.  https://doi.org/10.1016/j.jmapro.2018.08.003 CrossRefGoogle Scholar
  18. 18.
    Zhang X, Yang W, Xiao R (2015) Microstructure and mechanical properties of laser beam welded Al-Li alloy 2060 with Al-Mg filler wire. Mater Des 88:446–450.  https://doi.org/10.1016/j.matdes.2015.08.144 CrossRefGoogle Scholar
  19. 19.
    Zhang X, Huang T, Yang W, Xiao R, Liu Z, Li L (2016) Microstructure and mechanical properties of laser beam-welded AA2060 Al-Li alloy. J Mater Process Technol 237:301–308.  https://doi.org/10.1016/j.jmatprotec.2016.06.021 CrossRefGoogle Scholar
  20. 20.
    Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C (2017) An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy. Opt Lasers Eng 96:1–6.  https://doi.org/10.1016/J.OPTLASENG.2017.04.004 CrossRefGoogle Scholar
  21. 21.
    Liu F, Wang X, Zhou B, Huang C, Lyu F (2018) Corrosion resistance of 2060 aluminum–lithium alloy LBW welds filled with Al-5.6Cu wire. Materials (Basel) 11:1988.  https://doi.org/10.3390/ma11101988 CrossRefGoogle Scholar
  22. 22.
    Zhang X, Liu B, Zhou X, Wang J, Hashimoto T, Luo C, Sun Z, Tang Z, Lu F (2018) Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy. Corros Sci 135:177–191.  https://doi.org/10.1016/j.corsci.2018.02.044 CrossRefGoogle Scholar
  23. 23.
    He E, Liu J, Lee J, Wang K, Politis DJ, Chen L, Wang L (2018) Effect of porosities on tensile properties of laser-welded Al-Li alloy: an experimental and modelling study. Int J Adv Manuf Technol 95:659–671.  https://doi.org/10.1007/s00170-017-1175-3 CrossRefGoogle Scholar
  24. 24.
    Annin BD, Fomin VM, Karpov EV, Malikov AG, Orishich AM, Cherepanov AN (2015) Development of a technology for laser welding of the 1424 aluminum alloy with a high strength of the welded joint. J Appl Mech Tech Phys 56:945–950.  https://doi.org/10.1134/S0021894415060024 CrossRefGoogle Scholar
  25. 25.
    Malikov AG, Orishich AM (2018) Laser welding of the high-strength Al–Cu–Li alloy. Int J Adv Manuf Technol 94:2217–2227.  https://doi.org/10.1007/s00170-017-0860-6 CrossRefGoogle Scholar
  26. 26.
    Wang S, Zhao L, Jin Y (2019) Influence of post-weld heat treatment on microstructure and mechanical properties of laser beam welded 2195 Al–Li alloy. Mater Res Express 6:076567.  https://doi.org/10.1088/2053-1591/ab1736 CrossRefGoogle Scholar
  27. 27.
    Fridlyander IN, Grushko OE, Shamrai VF, Klochkov GG (2007) High-strength structural silver-alloyed underdensity Al-Cu-Li-Mg alloy. Met Sci Heat Treat 49:279–283.  https://doi.org/10.1007/s11041-007-0049-y CrossRefGoogle Scholar
  28. 28.
    Shamrai VF, Klochkova YY, Lazarev EM, Gordeev AS, Sirotinkin VP (2013) Structural states of aluminum-lithium alloy 1469 sheets. Russ Metall 2013:699–705.  https://doi.org/10.1134/S0036029513090139 CrossRefGoogle Scholar
  29. 29.
    Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139.  https://doi.org/10.1016/J.JALLCOM.2014.06.033 CrossRefGoogle Scholar
  30. 30.
    Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121.  https://doi.org/10.1107/S0021889891010804 CrossRefGoogle Scholar
  31. 31.
    Van Smaalen S, Meetsma A, De Boer JL, Bronsveld PM (1990) Refinement of the crystal structure of hexagonal Al2CuLi. J Solid State Chem 85:293–298.  https://doi.org/10.1016/S0022-4596(05)80086-6 CrossRefGoogle Scholar
  32. 32.
    Belov NA, Eskin DG, Aksenov AA, et al (2005) Alloys with lithium. Multicomponent Phase Diagrams 257–286.  https://doi.org/10.1016/B978-008044537-3/50008-1
  33. 33.
    Cassada WA, Shiflet GJ, Starke EA (1991) The effect of plastic deformation on Al2CuLi (T 1) precipitation. Metall Trans A 22:299–306.  https://doi.org/10.1007/BF02656799 CrossRefGoogle Scholar
  34. 34.
    De Geuser F, Bley F, Deschamps A (2012) A new method for evaluating the size of plate-like precipitates by small-angle scattering. J Appl Crystallogr 45:1208–1218.  https://doi.org/10.1107/s0021889812039891 CrossRefGoogle Scholar
  35. 35.
    Pasang T, Symonds N, Moutsos S, Wanhill RJH, Lynch SP (2012) Low-energy intergranular fracture in Al–Li alloys. Eng Fail Anal 22:166–178.  https://doi.org/10.1016/J.ENGFAILANAL.2012.01.006 CrossRefGoogle Scholar
  36. 36.
    Neibecker P, Leitner M, Kushaim M, Boll T, Anjum D, al-Kassab T’, Haider F (2017) L12 ordering and δ′ precipitation in Al-Cu-Li. Sci Rep 7:3254.  https://doi.org/10.1038/s41598-017-03203-z CrossRefGoogle Scholar
  37. 37.
    Yoshimura R, Konno TJ, Abe E, Hiraga K (2003) Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys. Acta Mater 51:2891–2903.  https://doi.org/10.1016/S1359-6454(03)00104-6 CrossRefGoogle Scholar
  38. 38.
    Gault B, de Geuser F, Bourgeois L, Gabble BM, Ringer SP, Muddle BC (2011) Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy. Ultramicroscopy 111:683–689.  https://doi.org/10.1016/J.ULTRAMIC.2010.12.004 CrossRefGoogle Scholar
  39. 39.
    Decreus B, Deschamps A, De Geuser F et al (2013) The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater 61:2207–2218.  https://doi.org/10.1016/J.ACTAMAT.2012.12.041 CrossRefGoogle Scholar
  40. 40.
    Duan SY, Wu CL, Gao Z, Cha LM, Fan TW, Chen JH (2017) Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys. Acta Mater 129:352–360.  https://doi.org/10.1016/J.ACTAMAT.2017.03.018 CrossRefGoogle Scholar
  41. 41.
    Deschamps A, Sigli C, Mourey T, de Geuser F, Lefebvre W, Davo B (2012) Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy. Acta Mater 60:1917–1928.  https://doi.org/10.1016/J.ACTAMAT.2012.01.010 CrossRefGoogle Scholar
  42. 42.
    Shamrai VF, Timofeev VN, Grushko OE (2010) Investigation of the structure of compacts and sheets of an Al-Cu-Li alloy strengthened by Al2CuLi (T1) particles. Phys Met Metallogr 109:383–391.  https://doi.org/10.1134/S0031918X10040125 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Alexandr Malikov
    • 1
    Email author
  • Natalia Bulina
    • 2
  • Marat Sharafutdinov
    • 2
    • 3
  • Anatoliy Orishich
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia
  2. 2.Institute of Solid State Chemistry and Mechanochemistry SB RASNovosibirskRussia
  3. 3.Budker Institute of Nuclear Physics SB RASNovosibirskRussia

Personalised recommendations