Advertisement

Micromechanical modeling of the machining behavior of natural fiber-reinforced polymer composites

  • Faissal ChegdaniEmail author
  • Mohamed El Mansori
  • Satish T. S. Bukkapatnam
  • J. N. Reddy
ORIGINAL ARTICLE
  • 15 Downloads

Abstract

This paper aims to develop a 2D finite element (FE) model at microscale for numerical simulation of the machining behavior of natural fiber-reinforced polymer (NFRP) composites. The main objective of this study is to reproduce the experimentally observed specific cutting behavior of natural fibers within the composite material. Flax fiber-reinforced polypropylene (PP) composites are modeled separately using an elasto-plastic behavior with a ductile damage criterion for flax fibers and PP matrix, while the microscopic interfaces are represented using the cohesive zone modeling (CZM). Numerical outputs are compared with experimental results for the FE model validation. Results show that the proposed FE model can reproduce the cutting force with a good precision for a large cutting speed range (12–80 m/min). The FE model shows also an efficiency and accuracy in predicting the cutting behavior of flax fibers by reproducing the fiber deformation, the fibers torn-off, and the fracture of the interfaces during machining. Moreover, the FE model can be an effective tool for analyzing the quality of the microscopic interfaces in the NFRP composites after machining.

Keywords

Natural fiber composites Machining Finite element analysis Experimental correlation 

Notes

Funding information

This study was financially supported by the urban community of Châlons-en-Champagne (Cités en Champagne - France).

References

  1. 1.
    Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24.  https://doi.org/10.1016/j.matdes.2012.07.014 CrossRefGoogle Scholar
  2. 2.
    Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429CrossRefGoogle Scholar
  3. 3.
    Pickering KL, Aruan Efendy MG, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112.  https://doi.org/10.1016/J.COMPOSITESA.2015.08.038 CrossRefGoogle Scholar
  4. 4.
    Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264.  https://doi.org/10.1016/S0266-3538(03)00096-4 CrossRefGoogle Scholar
  5. 5.
    Etaati A, Mehdizadeh SA, Wang H, Pather S (2014) Vibration damping characteristics of short hemp fibre thermoplastic composites. J Reinf Plast Compos 33:330–341.  https://doi.org/10.1177/0731684413512228 CrossRefGoogle Scholar
  6. 6.
    Rajeshkumar G, Hariharan V (2014) Free vibration characteristics of Phoenix Sp fiber reinforced polymer matrix composite beams. Procedia Eng 97:687–693.  https://doi.org/10.1016/J.PROENG.2014.12.298 CrossRefGoogle Scholar
  7. 7.
    Alves C, Ferrao PMC, Silva AJ et al (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18:313–327.  https://doi.org/10.1016/J.JCLEPRO.2009.10.022 CrossRefGoogle Scholar
  8. 8.
    Ramesh M, Palanikumar K, Hemachandra Reddy K (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sust Energ Rev 79:558–584.  https://doi.org/10.1016/J.RSER.2017.05.094 CrossRefGoogle Scholar
  9. 9.
    Nassar MMA, Arunachalam R, Alzebdeh KI (2017) Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Technol 88:2985–3004.  https://doi.org/10.1007/s00170-016-9010-9 CrossRefGoogle Scholar
  10. 10.
    Chegdani F, Mezghani S, El Mansori M, Mkaddem A (2015) Fiber type effect on tribological behavior when cutting natural fiber reinforced plastics. Wear 332–333:772–779.  https://doi.org/10.1016/j.wear.2014.12.039 CrossRefGoogle Scholar
  11. 11.
    Chegdani F, El Mansori M (2018) Friction scale effect in drilling natural fiber composites. Tribol Int 119:622–630.  https://doi.org/10.1016/j.triboint.2017.12.006 CrossRefGoogle Scholar
  12. 12.
    Chegdani F, Mezghani S, El Mansori M (2016) On the multiscale tribological signatures of the tool helix angle in profile milling of woven flax fiber composites. Tribol Int 100:132–140.  https://doi.org/10.1016/j.triboint.2015.12.014 CrossRefGoogle Scholar
  13. 13.
    Chegdani F, Mezghani S, El Mansori M (2015) Experimental study of coated tools effects in dry cutting of natural fiber reinforced plastics. Surf Coat Technol 284:264–272.  https://doi.org/10.1016/j.surfcoat.2015.06.083 CrossRefGoogle Scholar
  14. 14.
    Chegdani F, El Mansori M (2018) New multiscale approach for machining analysis of natural fiber reinforced bio-composites. J Manuf Sci Eng 141:11004.  https://doi.org/10.1115/1.4041326 CrossRefGoogle Scholar
  15. 15.
    Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33:939–948.  https://doi.org/10.1016/S1359-835X(02)00040-4 CrossRefGoogle Scholar
  16. 16.
    Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44.  https://doi.org/10.1016/S0924-0136(98)00227-1 CrossRefGoogle Scholar
  17. 17.
    Mackerle J (2003) Finite element analysis and simulation of machining: an addendum: a bibliography (1996–2002). Int J Mach Tools Manuf 43:103–114.  https://doi.org/10.1016/S0890-6955(02)00162-1 CrossRefGoogle Scholar
  18. 18.
    Komvopoulos K, Erpenbeck SA (1991) Finite element modeling of orthogonal metal cutting. J Eng Ind 113:253.  https://doi.org/10.1115/1.2899695 CrossRefGoogle Scholar
  19. 19.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48.  https://doi.org/10.1016/0013-7944(85)90052-9 CrossRefGoogle Scholar
  20. 20.
    Dixit US, Joshi SN, Davim JP (2011) Incorporation of material behavior in modeling of metal forming and machining processes: a review. Mater Des 32:3655–3670.  https://doi.org/10.1016/J.MATDES.2011.03.049 CrossRefGoogle Scholar
  21. 21.
    Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann 62:695–718.  https://doi.org/10.1016/J.CIRP.2013.05.006 CrossRefGoogle Scholar
  22. 22.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121.  https://doi.org/10.1016/j.ijmachtools.2012.01.006 CrossRefGoogle Scholar
  23. 23.
    Venu Gopala Rao G, Mahajan P, Bhatnagar N (2007) Machining of UD-GFRP composites chip formation mechanism. Compos Sci Technol 67:2271–2281.  https://doi.org/10.1016/J.COMPSCITECH.2007.01.025 CrossRefGoogle Scholar
  24. 24.
    Rao GVG, Mahajan P, Bhatnagar N (2007) Micro-mechanical modeling of machining of FRP composites – cutting force analysis. Compos Sci Technol 67:579–593.  https://doi.org/10.1016/j.compscitech.2006.08.010 CrossRefGoogle Scholar
  25. 25.
    Dandekar CR, Shin YC (2008) Multiphase finite element modeling of machining unidirectional composites: prediction of debonding and fiber damage. J Manuf Sci Eng 130:51016.  https://doi.org/10.1115/1.2976146 CrossRefGoogle Scholar
  26. 26.
    Gao C, Xiao J, Xu J, Ke Y (2016) Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation. Int J Adv Manuf Technol 83:1113–1125.  https://doi.org/10.1007/s00170-015-7592-2 CrossRefGoogle Scholar
  27. 27.
    Mahdi M, Zhang L (2001) A finite element model for the orthogonal cutting of fiber-reinforced composite materials. J Mater Process Technol 113:373–377.  https://doi.org/10.1016/S0924-0136(01)00675-6 CrossRefGoogle Scholar
  28. 28.
    Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39:597–613.  https://doi.org/10.1016/S0020-7403(96)00061-6 CrossRefzbMATHGoogle Scholar
  29. 29.
    Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of UD-FRP composites part 2: finite element analysis. Mach Sci Technol 9:503–528.  https://doi.org/10.1080/10910340500398183 CrossRefGoogle Scholar
  30. 30.
    Santiuste C, Soldani X, Miguélez MH (2010) Machining FEM model of long fiber composites for aeronautical components. Compos Struct 92:691–698.  https://doi.org/10.1016/J.COMPSTRUCT.2009.09.021 CrossRefGoogle Scholar
  31. 31.
    Lasri L, Nouari M, El Mansori M (2009) Modelling of chip separation in machining unidirectional FRP composites by stiffness degradation concept. Compos Sci Technol 69:684–692.  https://doi.org/10.1016/J.COMPSCITECH.2009.01.004 CrossRefGoogle Scholar
  32. 32.
    Ghafarizadeh S, Chatelain J-F, Lebrun G (2016) Finite element analysis of surface milling of carbon fiber-reinforced composites. Int J Adv Manuf Technol 87:399–409.  https://doi.org/10.1007/s00170-016-8482-y CrossRefGoogle Scholar
  33. 33.
    Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A Appl Sci Manuf 38:1912–1921.  https://doi.org/10.1016/j.compositesa.2007.03.006 CrossRefGoogle Scholar
  34. 34.
    Placet V, Cissé O, Lamine Boubakar M (2014) Nonlinear tensile behaviour of elementary hemp fibres. Part I: investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Compos Part A Appl Sci Manuf 56:319–327.  https://doi.org/10.1016/J.COMPOSITESA.2012.11.019 CrossRefGoogle Scholar
  35. 35.
    Keryvin V, Lan M, Bourmaud A, Parenteau T, Charleux L, Baley C (2015) Analysis of flax fibres viscoelastic behaviour at micro and nano scales. Compos Part A Appl Sci Manuf 68:219–225.  https://doi.org/10.1016/J.COMPOSITESA.2014.10.006 CrossRefGoogle Scholar
  36. 36.
    Chegdani F, El Mansori M, Mezghani S, Montagne A (2017) Scale effect on tribo-mechanical behavior of vegetal fibers in reinforced bio-composite materials. Compos Sci Technol 150:87–94.  https://doi.org/10.1016/j.compscitech.2017.07.012 CrossRefGoogle Scholar
  37. 37.
    Chegdani F, Wang Z, El Mansori M, Bukkapatnam STS (2018) Multiscale tribo-mechanical analysis of natural fiber composites for manufacturing applications. Tribol Int 122:143–150.  https://doi.org/10.1016/j.triboint.2018.02.030 CrossRefGoogle Scholar
  38. 38.
    Chegdani F, El Mansori M (2018) Mechanics of material removal when cutting natural fiber reinforced thermoplastic composites. Polym Test 67:275–283.  https://doi.org/10.1016/j.polymertesting.2018.03.016 CrossRefGoogle Scholar
  39. 39.
    Richard F, Poilâne C, Yang H, Gehring F, Renner E (2018) A viscoelastoplastic stiffening model for plant fibre unidirectional reinforced composite behaviour under monotonic and cyclic tensile loading. Compos Sci Technol 167:396–403.  https://doi.org/10.1016/J.COMPSCITECH.2018.08.020 CrossRefGoogle Scholar
  40. 40.
    Panamoottil SM, Das R, Jayaraman K (2017) Towards a multiscale model for flax composites from behaviour of fibre and fibre/polymer interface. J Compos Mater 51:859–873.  https://doi.org/10.1177/0021998316654303 CrossRefGoogle Scholar
  41. 41.
    Xiong X, Shen SZ, Hua L, Liu JZ, Li X, Wan X, Miao M (2018) Finite element models of natural fibers and their composites: a review. J Reinf Plast Compos 37:617–635.  https://doi.org/10.1177/0731684418755552 CrossRefGoogle Scholar
  42. 42.
    Lefeuvre A, Bourmaud A, Lebrun L, Morvan C, Baley C (2013) A study of the yearly reproducibility of flax fiber tensile properties. Ind Crop Prod 50:400–407.  https://doi.org/10.1016/j.indcrop.2013.07.035 CrossRefGoogle Scholar
  43. 43.
    Hearle JWS (1963) The fine structure of fibers and crystalline polymers. III Interpretation of the mechanical properties of fibers. J Appl Polym Sci 7:1207–1223.  https://doi.org/10.1002/app.1963.070070403 CrossRefGoogle Scholar
  44. 44.
    Shah DU, Schubel PJ, Licence P, Clifford MJ (2012) Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Compos Sci Technol 72:1909–1917.  https://doi.org/10.1016/J.COMPSCITECH.2012.08.005 CrossRefGoogle Scholar
  45. 45.
    (2011) Abaqus Analysis User’s Manual. In: Abaqus 6.11 Documentation. Dassault Systèmes Simulia Corp., ProvidenceGoogle Scholar
  46. 46.
    Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness 9:449–464.  https://doi.org/10.1533/ijcr.2004.0289 CrossRefGoogle Scholar
  47. 47.
    Danas K, Ponte Castañeda P (2012) Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials. Int J Solids Struct 49:1325–1342.  https://doi.org/10.1016/J.IJSOLSTR.2012.02.006 CrossRefGoogle Scholar
  48. 48.
    Lin S, Xia Y, Lin C, et al (2013) Stress state dependent failure loci of a talc-filled polypropylene material under static loading and dynamic loading. In: 13th International Conference on Fracture. Beijing, pp 1–16Google Scholar
  49. 49.
    Gao Y, Ko JH, Lee HP (2018) 3D coupled Eulerian-Lagrangian finite element analysis of end milling. Int J Adv Manuf Technol 98:849–857.  https://doi.org/10.1007/s00170-018-2284-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.MSMP Laboratory / EA7350Arts et Métiers ParisTechChâlons-en-ChampagneFrance
  2. 2.Department of Industrial and Systems EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations