Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties

  • Olusoji Oluremi AyodeleEmail author
  • Mary Ajimegoh Awotunde
  • Mxolisi Brendon Shongwe
  • Adewale Oladapo Adegbenjo
  • Bukola Joseph Babalola
  • Ayorinde Tayo Olanipekun
  • Peter Apata Olubambi


Intermetallic compounds (NiAl) are potential high-temperature structure materials due to their exceptional physical and thermo-mechanical properties. NiAl offer a wide range of applications which stem from aerospace to automobile industry but their utilization is restricted owing to low ductility and fracture toughness. However, carbon nanotubes (CNTs) have been recognized to impact strength and improve mechanical properties in metal matrices because of their superior tensile strength, high aspect ratio, low density, and elastic modulus. This has contributed to advance developments of novel materials. In recent times, CNTs have been a focus of immense research due to presence of sp2 C–C bonds in their outer shells, with continuous cylindrical shape which significantly contributed to their superior characteristics. The processing methods of integrating CNTs in metal matrices as well as maintaining their structural integrity through the powder metallurgy routes are reviewed. The mechanical properties, microstructure evolutions, effect of CNT addition, and sintering mechanism are also articulated in this review.


Intermetallic matrix composites Carbon nanotubes Mechanical properties Powder metallurgy Metal matrices 



The financial support for this research was provided to Olusoji O. Ayodele, by National Research Foundation (NRF), South Africa. The authors are indeed grateful for this privilege.


  1. 1.
    Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40(1):38–55Google Scholar
  2. 2.
    Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev 55(1):41–64Google Scholar
  3. 3.
    Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629Google Scholar
  4. 4.
    Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102:1689–1701Google Scholar
  5. 5.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58Google Scholar
  6. 6.
    Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater Sci Eng A 688:505–523Google Scholar
  7. 7.
    Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70(16):2237–2241Google Scholar
  8. 8.
    Dresselhaus M, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891Google Scholar
  9. 9.
    Eklund P, Holden J, Jishi R (1995) Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33(7):959–972Google Scholar
  10. 10.
    Yakobson BI, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Mechanical properties of carbon nanotubes, in carbon nanotubes: synthesis, structure, properties, and applications. Springer Berlin Heidelberg, Berlin, pp 287–327Google Scholar
  11. 11.
    Ebbesen TW (1996) Carbon nanotubes: preparation and properties. CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Ajayan P (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800Google Scholar
  13. 13.
    Yu M-F et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640Google Scholar
  14. 14.
    Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1):173–178Google Scholar
  15. 15.
    Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118Google Scholar
  16. 16.
    Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4(9):993–1008Google Scholar
  17. 17.
    Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14(12):5169–5172Google Scholar
  18. 18.
    Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706Google Scholar
  19. 19.
    Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9Google Scholar
  20. 20.
    Grabke HJ (1999) Oxidation of NiAl and FeAl. Intermetallics 7(10):1153–1158Google Scholar
  21. 21.
    Hu W, Weirich T, Hallstedt B, Chen H, Zhong Y, Gottstein G (2006) Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Mater 54(9):2473–2488Google Scholar
  22. 22.
    Geist D, Gammer C, Rentenberger C, Karnthaler HP (2015) Sessile dislocations by reactions in NiAl severely deformed at room temperature. J Alloys Compd 621:371–377Google Scholar
  23. 23.
    Dey G (2003) Physical metallurgy of nickel aluminides. Sadhana 28(1-2):247–262Google Scholar
  24. 24.
    Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912Google Scholar
  25. 25.
    Munir KS, Li Y, Liang D, Qian M, Xu W, Wen C (2015) Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Mater Des 88:138–148Google Scholar
  26. 26.
    Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830Google Scholar
  27. 27.
    Jia H, Zhang Z, Qi Z, Liu G, Bian X (2009) Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying. J Alloys Compd 472(1-2):97–103Google Scholar
  28. 28.
    Gill P, Munroe N (2012) Study of carbon nanotubes in Cu-Cr metal matrix composites. J Mater Eng Perform 21(11):2467–2471Google Scholar
  29. 29.
    Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375Google Scholar
  30. 30.
    Piggott M (1989) The interface in carbon fibre composites. Carbon 27(5):657–662Google Scholar
  31. 31.
    Wei S, Zhang ZH, Wang FC, Shen XB, Cai HN, Lee SK, Wang L (2013) Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater Sci Eng A 560:249–255Google Scholar
  32. 32.
    Talaş Ş (2018) In: Mitra R (ed) 3 - Nickel aluminides, in Intermetallic Matrix Composites. Woodhead Publishing, Sawston, pp 37–69Google Scholar
  33. 33.
    Foiles SM, Daw MS (2011) Application of the embedded atom method to Ni3Al. J Mater Res 2(1):5–15Google Scholar
  34. 34.
    Makino Y (1998) Application of band parameters to materials design. ISIJ Int 38(9):925–934Google Scholar
  35. 35.
    Robertson I, Wayman C (1984) Ni5Al3 and the nickel-aluminum binary phase diagram. Metallography 17(1):43–55Google Scholar
  36. 36.
    Okamoto H (2004) Al-Ni (aluminum-nickel). J Phase Equilib Diffus 25(4):394–394Google Scholar
  37. 37.
    Darolia R (1991) NiAl alloys for high-temperature structural applications. JOM 43(3):44–49Google Scholar
  38. 38.
    Frommeyer G, Rablbauer R (2008) High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Res Int 79(7):507–512Google Scholar
  39. 39.
    Schilke P, Schenectady N (2004) Advanced gas turbine materials and coatings gas turbine repair technology. Paper No. GER G, 3569Google Scholar
  40. 40.
    Vedula K, Hahn K, Boulogne B (1988) Room temperature tensile ductility in polycrystalline B2 NiAl. MRS Online Proceedings Library Archive, 133Google Scholar
  41. 41.
    Schulson E, Barker D (1983) A brittle to ductile transition in NiAl of a critical grain size Scpt Meta 17(4): 519-522 Google Scholar
  42. 42.
    Sauthoff G (1989) Intermetallic phases-materials developments and prospects. Z Met 80(5):337–344Google Scholar
  43. 43.
    George E, Liu C (1990) Brittle fracture and grain boundary chemistry of microalloyed NiAl. J Mater Res 5(4):754–762Google Scholar
  44. 44.
    Bochenek K, Basista M (2015) Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog Aerosp Sci 79:136–146Google Scholar
  45. 45.
    Field RD, Lahrman D, Darolia R (1991) Slip systems in< 001> oriented NiAl single crystals. Acta Metall Mater 39(12):2951–2959Google Scholar
  46. 46.
    Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy RJ, Vazquez J, Bayers R (1993) Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-LayerWalls. Nature 363:605-607Google Scholar
  47. 47.
    Saito R et al (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206Google Scholar
  48. 48.
    Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, HobokenGoogle Scholar
  49. 49.
    Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501Google Scholar
  50. 50.
    Munir KS, Wen C (2016) Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit Rev Solid State Mater Sci 41(5):347–366Google Scholar
  51. 51.
    Shi X et al (2007) Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes. Mater Sci Eng A 457(1-2):18–23Google Scholar
  52. 52.
    Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303Google Scholar
  53. 53.
    Yang YL, Wang YD, Ren Y, He CS, Deng JN, Nan J, Chen JG, Zuo L (2008) Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater Lett 62(1):47–50Google Scholar
  54. 54.
    Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37(5):855–858Google Scholar
  55. 55.
    Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218Google Scholar
  56. 56.
    Chen XH, Peng JC, Li XQ, Deng FM, Wang JX, Li WZ (2001) Tribological behavior of carbon nanotubes—reinforced nickel matrix composite coatings. J Mater Sci Lett 20(22):2057–2060Google Scholar
  57. 57.
    Chen X-H et al (2003) Carbon nanotube composite deposits with high hardness and high wear resistance. Adv Eng Mater 5(7):514–518Google Scholar
  58. 58.
    Chen W et al (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222Google Scholar
  59. 59.
    Zhou S-M, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A: Appl Sci Manuf 38(2):301–306Google Scholar
  60. 60.
    Salvetat J-P, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260Google Scholar
  61. 61.
    Meyyappan M (2005) Carbon nanotubes : science and applications. CRC Press, Boca RatonGoogle Scholar
  62. 62.
    Delaney P, Choi HJ, Ihm J, Louie SG, Cohen ML (1998) Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature 391(6666):466–468Google Scholar
  63. 63.
    Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct 43(11):1787–1803Google Scholar
  64. 64.
    Reihanian M, Bagherpour E, Paydar MH (2009) A model for volume fraction and particle size selection in tri-modal metal matrix composites. Mater Sci Eng A 513-514:172–175Google Scholar
  65. 65.
    Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol 69(7):1077–1081Google Scholar
  66. 66.
    Zeng X, Zhou GH, Xu Q, Xiong Y, Luo C, Wu J (2010) A new technique for dispersion of carbon nanotube in a metal melt. Mater Sci Eng A 527(20):5335–5340Google Scholar
  67. 67.
    Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189Google Scholar
  68. 68.
    Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585(Supplement C):408–414Google Scholar
  69. 69.
    Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A 425(1):192–200Google Scholar
  70. 70.
    Benjamin JS (1990) Mechanical alloying — a perspective. Met Powder Rep 45(2):122–127Google Scholar
  71. 71.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184Google Scholar
  72. 72.
    Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans A 5(8):1929–1934Google Scholar
  73. 73.
    Pierard N, Fonseca A, Konya Z, Willems I, van Tendeloo G, B.Nagy J (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335(1):1–8Google Scholar
  74. 74.
    Agarwal A, Bakshi SR, Lahiri D (2016) Carbon nanotubes: reinforced metal matrix composites. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Ferrer-Anglada N, Gomis V, el-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087Google Scholar
  76. 76.
    Shi Y et al (2004) Electroplated synthesis of Ni–P–UFD, Ni–P–CNTs, and Ni–P–UFD–CNTs composite coatings as hydrogen evolution electrodes. Mater Chem Phys 87(1):154–161Google Scholar
  77. 77.
    Liu B, Liu L, Liu X (2013) Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings. Surf Eng 29(7):507–510Google Scholar
  78. 78.
    Chen X et al (2002) Electrodeposited nickel composites containing carbon nanotubes. Surf Coat Technol 155(2-3):274–278Google Scholar
  79. 79.
    Changrong X, Xiaoxia G, Fanqing L, Dingkun P, Guangyao M (2001) Preparation of asymmetric Ni/ceramic composite membrane by electroless plating. Colloids Surf A Physicochem Eng Asp 179(2-3):229–235Google Scholar
  80. 80.
    Choa Y-H, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1-2):12–19Google Scholar
  81. 81.
    Cho Y, Choi G, Kim D (2006) A method to fabricate field emission tip arrays by electrocodeposition of single-wall carbon nanotubes and nickel. Electrochem Solid-State Lett 9(3):G107–G110Google Scholar
  82. 82.
    Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644Google Scholar
  83. 83.
    Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surf Coat Technol 201(24):9491–9496Google Scholar
  84. 84.
    Sung-Kyu K, Tae-Sung O (2011) Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans Nonferrous Metals Soc China 21:s68–s72Google Scholar
  85. 85.
    Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574Google Scholar
  86. 86.
    Ren Z, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107Google Scholar
  87. 87.
    Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8(1):51–54Google Scholar
  88. 88.
    Kim TA, Oh SM, Nahm KS, Mo YH (2006) Prepara@on of Silicon-CNT (Carbon Nano Tube) Composites for Anode in Lithium SecondaryBaAeries.The Electrochemical Society 163Google Scholar
  89. 89.
    Wang YH, Li YH, Lu J, Zhang JB, Huang H (2006) Microstructure and thermal characteris@c of Si-coated mul@-walled carbon nanotubes.Nanotechnology 17(15): 3817Google Scholar
  90. 90.
    Koziol K, Shaffer M, Windle A (2005) Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv Mater 17(6):760–763Google Scholar
  91. 91.
    Friedrichs S et al (2005) Single-chirality multi-walled carbon nanotubes. Microsc Microanal 11(S02):1536–1537Google Scholar
  92. 92.
    Ducati C, Koziol K, Friedrichs S, Yates TJV, Shaffer MS, Midgley PA, Windle AH (2006) Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2(6):774–784Google Scholar
  93. 93.
    Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623Google Scholar
  94. 94.
    Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131Google Scholar
  95. 95.
    Montazeri A, Montazeri N, Pourshamsian K, Tcharkhtchi A (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16(7):465–476Google Scholar
  96. 96.
    Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M (2010) Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano 4(6):3063–3072Google Scholar
  97. 97.
    Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428Google Scholar
  98. 98.
    Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10):1898–1905Google Scholar
  99. 99.
    Wang Q, Han Y, Wang Y, Qin Y, Guo ZX (2008) Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. J Phys Chem B 112(24):7227–7233Google Scholar
  100. 100.
    White B, Banerjee S, O'Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690Google Scholar
  101. 101.
    Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15(3):737–748Google Scholar
  102. 102.
    Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282(5-6):429–434Google Scholar
  103. 103.
    Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P (2009) Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113(48):20599–20605Google Scholar
  104. 104.
    Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 8(40):1373–1376Google Scholar
  105. 105.
    Li H, Guan L, Shi Z, Gu Z (2004) Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B 108(15):4573–4575Google Scholar
  106. 106.
    Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758Google Scholar
  107. 107.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603Google Scholar
  108. 108.
    Wilson T, Tyburski A, DePies MR, Vilches OE, Becquet D, Bienfait M (2002) Adsorption of H2 and D2 on carbon nanotube bundles. J Low Temp Phys 126(1-2):403–408Google Scholar
  109. 109.
    Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083–2089Google Scholar
  110. 110.
    Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025–1062Google Scholar
  111. 111.
    ChhowallaM A, Amaratunga G (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507Google Scholar
  112. 112.
    Vittori Antisari M (2003) R. Marazzi, and R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41(12):2393–2401Google Scholar
  113. 113.
    Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H, Li Y (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49(14):4792–4800Google Scholar
  114. 114.
    Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75(20):3087–3089Google Scholar
  115. 115.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487Google Scholar
  116. 116.
    Rinzler A et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67(1):29–37Google Scholar
  117. 117.
    Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1-2):49–54Google Scholar
  118. 118.
    Zhang Y, Gu H, Iijima S (1998) Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl Phys Lett 73(26):3827–3829Google Scholar
  119. 119.
    Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867Google Scholar
  120. 120.
    Suárez M et al (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Ertuğ B (ed) Sintering Applications. InTech, Rijeka Ch. 13Google Scholar
  121. 121.
    Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838Google Scholar
  122. 122.
    Matsugi K (1995) Effect of direct current pulse discharge on specific resistivity of copper and iron powder compacts. J Jpn Inst Metals 59:740–745Google Scholar
  123. 123.
    Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927Google Scholar
  124. 124.
    Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443(1-2):25–32Google Scholar
  125. 125.
    Kim KT, et al (2004) Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders. MRS Online Proceedings Library Archive, 821Google Scholar
  126. 126.
    Majkic G, Chen Y (2006) Proc. 47th AiAA Conf., Newport. Rhode Island 7:1–5.Google Scholar
  127. 127.
    Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A 696:10–25Google Scholar
  128. 128.
    Adegbenjo A et al (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129Google Scholar
  129. 129.
    Okoro AM, Machaka R, Lephuthing SS, Awotunde MA, Oke SR, Falodun OE, Olubambi PA (2019) Dispersion characteristics, interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J Alloys Compd 785:356–366Google Scholar
  130. 130.
    Adegbenjo AO, Obadele BA, Olubambi PA (2018) Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering. J Alloys Compd 749:818–833Google Scholar
  131. 131.
    Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J, Su Y, Li Z, Zhang D (2017) Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf 96:57–66Google Scholar
  132. 132.
    Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48Google Scholar
  133. 133.
    Groven LJ, Puszynski JA (2012) Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites. Chem Eng J 183:515–525Google Scholar
  134. 134.
    Chang S-Y, Lin S-J (1997) Processing stainless steel fibre reinforced NiAl matrix composites by reactive hot pressing. J Mater Sci 32(19):5127–5135Google Scholar
  135. 135.
    Hunt EM, Plantier KB, Pantoya ML (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Mater 52(11):3183–3191Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Olusoji Oluremi Ayodele
    • 1
    Email author
  • Mary Ajimegoh Awotunde
    • 1
  • Mxolisi Brendon Shongwe
    • 2
  • Adewale Oladapo Adegbenjo
    • 1
  • Bukola Joseph Babalola
    • 2
  • Ayorinde Tayo Olanipekun
    • 1
  • Peter Apata Olubambi
    • 1
  1. 1.Centre for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Institute for Nanoengineering Research, Department of Chemical, Metallurgy and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations