Advertisement

Designing sintering time for a TiSiC compound: a microwave and conventional comparison

  • Lucas D. Calado
  • Giovana S. Padilha
  • Wislei R. Osório
  • Ausdinir D. BortolozoEmail author
ORIGINAL ARTICLE
  • 18 Downloads

Abstract

Ti3SiC2 has an important role on the resulting mechanical properties, which is based on the ceramic and metallic aspects. The microstructural array of the Ti3SiC2 and its corresponding hardness and mechanical behavior are analyzed. X-ray diffractometry (XRD), microstructural analysis using scanning electron microscopy (SEM-EDS), and densification using Archimedes’ principle are used. It is found that the microwave (MW) processing provides higher hardness values and compressive strengths than the conventional (CN) sintered samples, i.e., ~ 8 GPa and ~ 240 MPa, respectively. Also, it is found that the compressive strength to density ratio clearly favors the sample produced using MW processing. This induces that a lightweight effect associated with an environmentally friendly aspect is also attained. It is induced that a Ti3SiC2 compound can be successfully produced by using a microwave treating when a conventional process is compared.

Keywords

MAX phase Microwave heating Mechanical properties Refine microstructural array 

Notes

Funding information

This work was supported by the FAPESP (Grant 16/13352-0).

References

  1. 1.
    Jeitschko W, Nowotny H (1967) Die Kristallstruktur von Ti3SiC2 - ein neuer Komplexearbid-Typ. Monatsh Chem 98(2):329–337CrossRefGoogle Scholar
  2. 2.
    Barsoum MW, El-Raghy T (1996) Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc 79(7):1953–1956CrossRefGoogle Scholar
  3. 3.
    Okano T, Iseki T, Yano T (1995) Synthesis and high temperature mechanical properties of Ti3SiC2/SiC composite. J Mater Sci 30:3087–3090CrossRefGoogle Scholar
  4. 4.
    Goto T, Hirai T (1987) Chemically vapor deposited Ti3SiC2. Mater Res Bull 22(9):1195–1201CrossRefGoogle Scholar
  5. 5.
    Palmquist J-P, Jansson U (2002) Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl Phys Lett 81:835–837CrossRefGoogle Scholar
  6. 6.
    Riley DP, Kisi EH, Wu E, Mccallum A (2003) Self-propagating high-temperature synthesis of Ti3SiC2 from 3Ti+SiC+C reactants. J Mater Sci Lett 22:1101–1104CrossRefGoogle Scholar
  7. 7.
    Lis J, Miyamoto Y, Pampuch R, Tanihata K (1995) Ti3SiC-based materials prepared by HIP-SHS techniques. Mater Lett 22(4):163–168CrossRefGoogle Scholar
  8. 8.
    Arunajatesan S, Carim AH (1995) Synthesis of titanium silicon carbide. J Am Ceram Soc 78:667–672CrossRefGoogle Scholar
  9. 9.
    Li JT, Miyamoto Y (1999) Fabrication of monolithic Ti3SiC2 ceramic through reactive sintering of Ti/Si/2TiC. J Mater Synth Process 7:91–96CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Sun Z, Chen S, Zhang Y (1998) In-situ hot pressing/solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramics. Mater Res Innov 2:142–146CrossRefGoogle Scholar
  11. 11.
    Zhou W, Mei B, Zhu J, Hong X (2005) Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by spark plasma sintering (SPS) technique. J Mater Sci 40(8):2099–2100CrossRefGoogle Scholar
  12. 12.
    Zhang ZF, Sun ZM, Hashimoto H, Abe T (2002) Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders. J Eur Ceram Soc 22(16):2957–2961CrossRefGoogle Scholar
  13. 13.
    Lagos MA, Pellegrini C, Agote I, Azurmendi N, Barcena J, Parco M, Silvestroni L, Zoli L, Sciti D (2019) Ti3SiC2-Cf composites by spark plasma sintering: processing, microstructure and thermo-mechanical properties. J Eur Ceram Soc 39:2824–2830CrossRefGoogle Scholar
  14. 14.
    Li JF, Matsuki T, Watanabe R (2003) Fabrication of highly dense Ti3SiC2 ceramics by pressureless sintering of mechanically alloyed elemental powders. J Mater Sci 38:2661–2666CrossRefGoogle Scholar
  15. 15.
    Zhou C, Wu X, Ngai TL, Li L, Ngai S, Chen Z (2018) Al alloy/Ti3SiC2 composites fabricated by pressureless infiltration with melt-spun Al alloy ribbons. Ceram Int 44:6026–6032CrossRefGoogle Scholar
  16. 16.
    Li S-B, Zhai H-X (2005) Synthesis and reaction mechanism of Ti3SiC2 by mechanical alloying of elemental Ti, Si, and C powders. J Am Ceram Soc 88(8):2092–2098CrossRefGoogle Scholar
  17. 17.
    Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494:175–189CrossRefGoogle Scholar
  18. 18.
    Asadian K, Ebadzadeh T (2013) Synthesis of Nanosized Ba(Zn1/3Nb2/3)O3 Using microwave heating process. J Mater Eng Perform 22:898–902CrossRefGoogle Scholar
  19. 19.
    Kirill I, Rybakov EA, Olevsky E, Krikun V (2013) Microwave sintering: fundamentals and modeling. J Am Ceram Soc 96(4):1003–1020CrossRefGoogle Scholar
  20. 20.
    Venkateswarlu K, Saurabh S, Rajinikanth V et al (2010) Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering. J Mater Eng Perform 19:231–236CrossRefGoogle Scholar
  21. 21.
    Chandrasekaran S, Ramanathan S, Basak T (2011) Microwave material processing—a review. J Rev 58(2):330–363Google Scholar
  22. 22.
    Wu H, Chen F, Xu J (2017) Preparation and Characterization of (Mo, W)Si2-SiC Composites by In Situ Microwave Reaction Sintering. J Mater Eng Perform 26:3239–3244CrossRefGoogle Scholar
  23. 23.
    Wang C, Hu S, Cai Y, Sakka S, Grasso Q, Huang (2014) Synthesis of high-purity Ti3SiC2 by microwave sintering. Int J Appl Ceram Technol 11(5):911–918CrossRefGoogle Scholar
  24. 24.
    Li F, Zhang H, Wang Q, Qu D, Zhou T, Kim B, Sakka Y, Hu C, Huang Q (2014) Microwave sintering of Ti3Si(Al)C2 ceramic. J Am Ceram Soc 97(9):2731–2735CrossRefGoogle Scholar
  25. 25.
    Liu W, Qiu C, Zhou J, Ding Z, Zhou X, Du S, Han Y-H, Huang Q (2015) Fabrication of Ti 2 AlN ceramics with orientation growth behavior by the microwave sintering method. J Eur Ceram Soc 35:1385–1391CrossRefGoogle Scholar
  26. 26.
    Komarenko P, Clark DE (2009) Synthesis of Ti3SiC2-based materials using microwave-initiated SHS. Ceram Eng Sci Proc 15:1028–1035CrossRefGoogle Scholar
  27. 27.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRefGoogle Scholar
  28. 28.
    Larson AC, Von Dreele RB (1994) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, pp 86–748Google Scholar
  29. 29.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  30. 30.
    Racault C, Langlais F, Naslain R (1994) Solid-state synthesis and characterization of the ternary phase Ti3SiC2. J Mater Sci 29:3384–3392CrossRefGoogle Scholar
  31. 31.
    Li X, Xu L, Chen QN, Cao X, Liu L, Wang Y, Zhang H, Meng C, Wu Q (2018) Investigation of formation mechanism of Ti3SiC2 by high pressure and high-temperature synthesis. High Pressure Res 38:440–447CrossRefGoogle Scholar
  32. 32.
    Wu E, Riley DP, Kisi EH, Smith RI (2005) Reaction kinetics in Ti3SiC2 synthesis studied by time-resolved neutron diffraction. J Eur Ceram Soc 25:3503–3508CrossRefGoogle Scholar
  33. 33.
    Choi SK, Chandrasekaran M, Brabers MJ (1990) Interaction between titanium and SiC. J Mater Sci 25:1957–1964CrossRefGoogle Scholar
  34. 34.
    Li B, Cheng L-F, Zhang L-T (2002) Identification of damage tolerance of Ti3SiC2 By hardness indentations and single edge notched beam test. Mater Sci Technol 18:231–233CrossRefGoogle Scholar
  35. 35.
    El-Raghy T, Zavaliangos A, Barsoum MW, Kalidindi SR (1997) Damage mechanisms around hardness indentations in TiSiC. J Am Ceram Soc 80:513–516CrossRefGoogle Scholar
  36. 36.
    Fraczkiewicz M, Zhou AG, Barsoum MW (2006) Mechanical damping in porous Ti3SiC2. Acta Mater 54:5261–5270CrossRefGoogle Scholar
  37. 37.
    Radovic M, Barsoum MW, El-Raghy T, Wiederhorn SM, Luecke WE (2002) Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater 50:1297–1306CrossRefGoogle Scholar
  38. 38.
    Radovic M, Barsoum MW, El-Raghy T, Seidensticker J (2000) Tensile properties of Ti3SiC2 in the 25–1300°C temperature range. Acta Mater 48:453–459CrossRefGoogle Scholar
  39. 39.
    Pechkovskii EP, Firstov SA (2003) Structure and mechanical properties of porous titanosilicon carbide Ti3SiC2. Powder Metall Metal Ceram 42:424CrossRefGoogle Scholar
  40. 40.
    Li J-F, Pan W, Sato F, Watanabe R (2001) Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures. Acta Mater 49(6):937–945CrossRefGoogle Scholar
  41. 41.
    Sun ZM, Murugaiah A, Zhen T, Zhou A, Barsoum MW (2005) Microstructure and mechanical properties of porous Ti3SiC2. Acta Mater 53(16):4359–4366CrossRefGoogle Scholar
  42. 42.
    Velasco B, Gordo E, Hu L, Radovic M, Tsipas SA (2018) Influence of porosity on elastic properties of Ti2AlC and Ti3SiC2 MAX phase foams. J Alloys Compd 764:24–35CrossRefGoogle Scholar
  43. 43.
    Yue Z, Yang L, Gong J, Gao J (2018) Synthesis and comparison of Two cBN composites with starting ternary carbide binders. J Mater Eng Perform 27:2124–2130CrossRefGoogle Scholar
  44. 44.
    Gao H, Luo F, Nan H, Wen Q, Qing Y, Wang C, Zhou W, Zhu D (2019) Improved mechanical and microwave absorption properties of SiC fiber/mullite matrix composite using hybrid SiC/Ti3SiC2 fillers. J Alloys Compd 791:51–59CrossRefGoogle Scholar
  45. 45.
    Wang Z, Zhang H, Liu X, Jiang Y, Gao H, He Y (2018) Reactive synthesis of porous nanolaminate Ti3(Si,Al)C2 intermetallic compound. Mater Chem Phys 208:85–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Applied Sciences/FCA, Research Group in Manufacturing Advanced MaterialsUniversity of Campinas, UNICAMP, Campus IILimeiraBrazil
  2. 2.School of TechnologyUniversity of Campinas−UNICAMP, Campus ILimeiraBrazil

Personalised recommendations