Advertisement

Parametric design and surface topography analysis of turbine blade processing by turn-milling based on CAM

  • Jinsheng Ning
  • Lida ZhuEmail author
ORIGINAL ARTICLE

Abstract

The design and manufacturing level of the blade largely affects the performance of the aero engine. In this paper, the blade is taken as the research object, focusing on its design and processing. On the one hand, based on the mathematical method of fifth-order polynomial, a GUI module for parameterized design of different blade profiles is established. On the other hand, in CAM environment, the procedure division of turn-milling the blade, the generation of tool path, the optimization of NC program and the simulation of machining process are completed. On this basis, the experiment of machining the part by turn-milling is finished. In addition, in order to study the quality of the machined surface, a mathematical model for predicting the surface topography of turn-milling blade is established based on the surface unfolding and meshing of the workpiece. Then, the effects of the number of cutter teeth, tool rotation speed, feed rate, and the cutter radius on surface topography are analyzed qualitatively. Besides, the maximum surface residual height is used as an index to quantitatively compare the influence of different parameters on surface topography. Finally, the simulation reliability is verified by comparing with the experimental surface.

Keywords

Blade Profile design Virtual machining Turn-milling Surface topography 

Nomenclature

b

Chord length (mm)

fmax

Maximum deflection

β1k

Leading edge angle (°)

β2k

Trailing edge angle (°)

β1

Import (front) structural angle (°)

β2

Exit (trailing edge) structural angle (°)

βm

Installation angle (°)

βo

Outlet angle (°)

τ

Cascade solidity, τ = b/t

i

Attack angle, the difference between β1 and β1k. (°)

δ

Bend angle, the sum of β1k and β2k. (°)

t

Grid pitch (mm)

r1

Leading-edge radius (mm)

r2

Trailing-edge radius (mm)

Cmax

Maximum thickness (mm)

φ1

Leading edge wedge angle of inlet edge (°)

φ2

Leading edge wedge angle of exit edge (°)

l

Throat width (mm)

S

Axial width of blade profile (mm)

Nb

Number of blades

nt

Tool rotation speed (rpm)

nw

Workpiece rotation speed (rpm)

nw, relative

Relative speed of the workpiece (rpm)

nw, ave

The average value of relative rotational speed of workpiece (rpm)

ap

Cutting depth (mm)

Rt

Tool radius (mm)

Rw

Workpiece radius (mm)

∆ϕ

Instantaneous rotation angle of workpiece

ΔW

Residual height of the workpiece surface after each feed of the tool (μm)

W

Residual height of the machined surface (μm)

Rs

Instantaneous radius at the edge of blade section (mm)

c

Total feed rate (mm/z)

ca

Axial feed per tooth (mm/z)

cz

Circumferential feed per tooth (mm/z)

fa

Axial feed per second (mm/s)

Nt

Number of cutter teeth

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (NSFC; 51475087).

References

  1. 1.
    Li J, Sun H, Wang J, Feng Z (2011) Numerical investigations on the steady and unsteady leakage flow and heat transfer characteristics of rotor blade squealer tip. J Therm Sci 20:304–311.  https://doi.org/10.1007/s11630-011-0474-5 CrossRefGoogle Scholar
  2. 2.
    Xiao G, Huang Y (2016) Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade. Int J Adv Manuf Technol 83:1697–1706.  https://doi.org/10.1007/s00170-015-7680-3 CrossRefGoogle Scholar
  3. 3.
    Öksüz O, Akmandor IS (2008) Multi-objective aerodynamic optimization of axial turbine blades using a novel multi-level genetic algorithm. Vol 6 Turbomachinery, Parts A, B, C 132:2375–2388.  https://doi.org/10.1115/GT2008-50521
  4. 4.
    Liu YP, Zhao S, Dong XY (2010) Constructing section profile curve of turbine blade. Int Conf Wavelet Anal Pattern Recognition 2010:211–215.  https://doi.org/10.1109/ICWAPR.2010.5576329 CrossRefGoogle Scholar
  5. 5.
    Alexeev RA, Tishchenko VA, Gribin VG, Gavrilov IY (2017) Turbine blade profile design method based on Bezier curves. J Phys Conf Ser 891:012254.  https://doi.org/10.1088/1742-6596/891/1/012254 CrossRefGoogle Scholar
  6. 6.
    Fathi A, Shadaram A (2013) Multi-level multi-objective multi-point optimization system for axial flow compressor 2d blade design. Arab J Sci Eng 38:351–364.  https://doi.org/10.1007/s13369-012-0435-7 CrossRefGoogle Scholar
  7. 7.
    Samad A, Kim KY (2008) Multi-objective optimization of an axial compressor blade. J Mech Sci Technol 22:999–1007.  https://doi.org/10.1007/s12206-008-0122-5 CrossRefGoogle Scholar
  8. 8.
    Zhang W, Zou Z, Ye J (2012) Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance. Appl Energy 93:655–667.  https://doi.org/10.1016/j.apenergy.2011.12.091 CrossRefGoogle Scholar
  9. 9.
    Wan M, Gao TQ, Feng J, Zhang WH (2019) On improving chatter stability of thin-wall milling by prestressing. J Mater Process Technol 264:32–44.  https://doi.org/10.1016/j.jmatprotec.2018.08.042 CrossRefGoogle Scholar
  10. 10.
    Zhu L, Jiang Z, Shi J, Jin C (2015) An overview of turn-milling technology. Int J Adv Manuf Technol 81:493–505.  https://doi.org/10.1007/s00170-015-7187-y CrossRefGoogle Scholar
  11. 11.
    Comak A, Altintas Y (2017) Mechanics of turn-milling operations. Int J Mach Tools Manuf 121:2–9.  https://doi.org/10.1016/j.ijmachtools.2017.03.007 CrossRefGoogle Scholar
  12. 12.
    Karagüzel U, Uysal E, Budak E, Bakkal M (2015) Analytical modeling of turn-milling process geometry, kinematics and mechanics. Int J Mach Tools Manuf 91:24–33.  https://doi.org/10.1016/j.ijmachtools.2014.11.014 CrossRefGoogle Scholar
  13. 13.
    Grigoriev SN, Kutin AA, Turkin M (2013) Advanced CNC programming methods for multi-axis precision machining. Key Eng Mater 581:478–484.  https://doi.org/10.4028/www.scientific.net/KEM.581.478 CrossRefGoogle Scholar
  14. 14.
    Bin DX, Wan M, Yang Y, Zhang WH (2019) Efficient prediction of varying dynamic characteristics in thin-wall milling using freedom and mode reduction methods. Int J Mech Sci 150:202–216.  https://doi.org/10.1016/j.ijmecsci.2018.10.009 CrossRefGoogle Scholar
  15. 15.
    Zhang D, Li C, Zhang Y, Jia D, Zhang X (2015) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78:1275–1288.  https://doi.org/10.1007/s00170-014-6722-6 CrossRefGoogle Scholar
  16. 16.
    Kundrak J, Felho C (2018) Topography of the machined surface in high performance face milling. Procedia CIRP 77:340–343.  https://doi.org/10.1016/j.procir.2018.09.030 CrossRefGoogle Scholar
  17. 17.
    Ramana MV, Aditya YS (2017) Optimization and influence of process parameters on surface roughness in turning of titanium alloy. Mater Today Proc 4:1843–1851.  https://doi.org/10.1016/j.matpr.2017.02.028 CrossRefGoogle Scholar
  18. 18.
    Zhu L, Jin X, Liu C (2016) Experimental investigation on 3D chip morphology properties of rotary surface during orthogonal turn-milling of aluminum alloy. Int J Adv Manuf Technol 84:1253–1268.  https://doi.org/10.1007/s00170-015-7758-y CrossRefGoogle Scholar
  19. 19.
    Zhu L, Li H, Wang W (2013) Research on rotary surface topography by orthogonal turn-milling. Int J Adv Manuf Technol 69:2279–2292.  https://doi.org/10.1007/s00170-013-5202-8 CrossRefGoogle Scholar
  20. 20.
    Savas V, Ozay C (2008) The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm. Int J Adv Manuf Technol 37:335–340.  https://doi.org/10.1007/s00170-007-0984-1 CrossRefGoogle Scholar
  21. 21.
    Jin CZ, Fang R (2014) Research on surface topography and roughness of micro parts by high speed turn-milling. Mater Sci Forum 800–801:607–612.  https://doi.org/10.4028/www.scientific.net/MSF.800-801.607 CrossRefGoogle Scholar
  22. 22.
    Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling. Int J Adv Manuf Technol 51:915–924.  https://doi.org/10.1007/s00170-010-2686-3 CrossRefGoogle Scholar
  23. 23.
    Zhu L, Liu B, Wang X, Xu Z (2016) Research on cutting force of turn-milling based on thin-walled blade. Adv Mater Sci Eng 2016:1–11.  https://doi.org/10.1155/2016/2638261 CrossRefGoogle Scholar
  24. 24.
    Liu C, Zhu L, Ni C (2018) Chatter detection in milling process based on VMD and energy entropy. Mech Syst Signal Process 105:169–182.  https://doi.org/10.1016/j.ymssp.2017.11.046 CrossRefGoogle Scholar
  25. 25.
    Karaguzel U, Bakkal M, Budak E (2012) Process modeling of turn-milling using analytical approach. Procedia CIRP 4:131–139.  https://doi.org/10.1016/j.procir.2012.10.024 CrossRefGoogle Scholar
  26. 26.
    Miyazaki T, Hotta Y, Kunii J et al (2009) A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 28:44–56.  https://doi.org/10.4012/dmj.28.44 CrossRefGoogle Scholar
  27. 27.
    Magambo S, Ying L (2013) The NC Machining post-processing technology based on UG. 2:4–7.  https://doi.org/10.4028/www.scientific.net/AMR.753-755.1254 CrossRefGoogle Scholar
  28. 28.
    Lin T, Premarathna A, Bohez ELJ (2018) Integrated approach for milling impeller parts. Comput Aided Des Appl 15:180–187.  https://doi.org/10.1080/16864360.2017.1375667 CrossRefGoogle Scholar
  29. 29.
    Zhang W-H, Tan G, Wan M, Gao T, Bassir DH (2008) A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling. J Manuf Sci Eng 130:011003.  https://doi.org/10.1115/1.2815337 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangChina

Personalised recommendations