Advertisement

Influence of different grades of CuW electrodes when die sinking ED-machining of cemented carbide

  • Giovani Conrado Carlini
  • Fred Lacerda AmorimEmail author
  • Walter Lindolfo Weingaertner
ORIGINAL ARTICLE
  • 10 Downloads

Abstract

This work investigates the influences of two different grades of copper–tungsten (CuW) electrodes with 65% and 85% of tungsten when sinking ED-machining cemented carbide (WC-Co) with 10% Co. In EDM, literature research works evaluating the influence of different grades of CuW electrodes when ED-machining the same WC-Co workpiece material were not found. In this work, rough, semi-finish, and finish EDM regimes were applied to evaluate process performance aspects as material removal rate (Vw) and volumetric relative wear (ϑ). Workpiece surface integrity was evaluated in terms of surface roughness, hardness, and chemical composition. From the results, the CuW85 electrode presented lower volumetric relative wear (ϑ) and higher material removal rate (Vw) than that of CuW65 electrode. Micro-cracks, from recast layer in direction to heat affected zone, were observed for both grades of CuW electrodes for rough ED-machining. Nanoindentation showed a hardness reduction of about 10% in heat-affected zone in relation to the base material for finishing regime with both CuW electrode grades. EDS revealed that the presence of Co and WC was not altered in recast layer and heat-affected zone.

Keywords

Sinking EDM CuW65 and CuW85 electrodes Cemented carbide Process performance Surface integrity 

Nomenclature

īe

Average discharge current [A]

HA

Heat-affected zone [μm]

RL

Recast layer [μm]

Sa

Average height of selected area [μm]

Sq

Root-mean-square [μm]

te

Discharge duration [μs]

to

Pulse interval time [μs]

ti

Pulse time [μs]

ûi

Open circuit voltage [V]

Ve

Tool wear rate [mm3/min]

Vw

Material removal rate [mm3/min]

ϑ

Volumetric relative wear (Ve/Vw) [%]

λc

Cut-off sampling length [μm]

τ

Duty factor (ti / ti + to) [%]

Notes

References

  1. 1.
    Czelusniak T, Higa CF, Torres RD, Laurindo CAH, de Paiva Júnior JMF, Lohrengel A, Amorim FL (2019) Materials used for sinking EDM electrodes: a review. J Braz Soc Mech Sci Eng 41:14.  https://doi.org/10.1007/s40430-018-1520-y CrossRefGoogle Scholar
  2. 2.
    Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52:483–507.  https://doi.org/10.1016/S0007-8506(07)60200-5 CrossRefGoogle Scholar
  3. 3.
    Dreyer K, Westphal H, Sottke V, Tabersky R (1999) New developments for Hardmetals, Cermets and coatings in experiment and practice. VDI-Seminar High Perform. Process. Cut. OperGoogle Scholar
  4. 4.
    Mahdavinejad RA, Mahdavinejad A (2005) ED machining of WC-Co. J Mater Process Technol 162–163:637–643.  https://doi.org/10.1016/j.jmatprotec.2005.02.211 CrossRefGoogle Scholar
  5. 5.
    Kulkarni A, Sharan R, Lal GK (2002) An experimental study of discharge mechanism in electrochemical discharge machining. Int J Mach Tools Manuf 42:1122–1127CrossRefGoogle Scholar
  6. 6.
    Watson SH, Freer HE (1980) A comparative study of electro-chemical and electro discharge machining of a tungsten carbide 25% cobalt alloy. In: 6th symposium for electro-machining. pp 150–154Google Scholar
  7. 7.
    Klocke F, König W (2007) Fertigungsverfahren 3. Springer Berlin Heidelberg, BerlinGoogle Scholar
  8. 8.
    Muthuramalingam T, Mohan B (2015) A review on influence of electrical process parameters in EDM process. Arch Civ Mech Eng 15:87–94.  https://doi.org/10.1016/j.acme.2014.02.009 CrossRefGoogle Scholar
  9. 9.
    KUMAR S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209:3675–3687.  https://doi.org/10.1016/j.jmatprotec.2008.09.032 CrossRefGoogle Scholar
  10. 10.
    Klocke F, Hoslten M, Klink A (2016) Technological and economic investigations on the application of metal infiltrated graphite electrodes for the sinking EDM of cemented carbides. Procedia CIRP 42:632–637.  https://doi.org/10.1016/j.procir.2016.02.261 CrossRefGoogle Scholar
  11. 11.
    Amorim FL, Weingaertner WL, Bassani IA (2010) Aspects on the optimization of die-sinking EDM of tungsten carbide-cobalt. J Braz Soc Mech Sci Eng 32:496–502.  https://doi.org/10.1590/S1678-58782010000500009 CrossRefGoogle Scholar
  12. 12.
    Lee SH, Li XP (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115:344–358.  https://doi.org/10.1016/S0924-0136(01)00992-X CrossRefGoogle Scholar
  13. 13.
    JAHAN MP, WONG YS, RAHMAN M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209:3956–3967.  https://doi.org/10.1016/j.jmatprotec.2008.09.015 CrossRefGoogle Scholar
  14. 14.
    Yu Z, Jun T, Masanori K (2004) Dry electrical discharge machining of cemented carbide. 149:353–357.  https://doi.org/10.1016/j.jmatprotec.2003.10.044
  15. 15.
    Qu J, Riester LL, Shih AJ et al (2003) Nanoindentation characterization of surface layers of electrical discharge machined WC-Co. Mater Sci Eng A 344:125–131.  https://doi.org/10.1016/S0921-5093(02)00395-7 CrossRefGoogle Scholar
  16. 16.
    Carlini G, Xavier FA, Weingaertner WL, et al (2018) Análise de parâmetros na remoção de metal duro utilizando WEDM. In: Anais do X Congresso Nacional de Engenharia Mecânica. ABCM, SalvadorGoogle Scholar
  17. 17.
    Klocke F, Chrubasik L, Klink A, Hensgen L (2018) Analysis of fundamental process characteristics for sinking-EDM of cemented carbides as a function of polarity. Procedia CIRP 68:313–318.  https://doi.org/10.1016/j.procir.2017.12.070 CrossRefGoogle Scholar
  18. 18.
    Farooqui MN, Patil NG (2018) A perspective on shaping of advanced ceramics by electro discharge machining. Procedia Manuf 20:65–72.  https://doi.org/10.1016/j.promfg.2018.02.009 CrossRefGoogle Scholar
  19. 19.
    Mendes LA, Amorim FL, Weingaertner WL (2015) Automated system for the measurement of spark current and electric voltage in wire EDM performance. J Braz Soc Mech Sci Eng 37:123–131.  https://doi.org/10.1007/s40430-014-0171-x CrossRefGoogle Scholar
  20. 20.
    Rizvi SAH, Agarwal S (2016) An investigation on surface integrity in EDM process with a copper tungsten electrode. Procedia CIRP 42:612–617.  https://doi.org/10.1016/j.procir.2016.02.254 CrossRefGoogle Scholar
  21. 21.
    Duszová A, Halgaš R, Bľanda M, Hvizdoš P, Lofaj F, Dusza J, Morgiel J (2013) Nanoindentation of WC-co hardmetals. J Eur Ceram Soc 33:2227–2232.  https://doi.org/10.1016/j.jeurceramsoc.2012.12.018 CrossRefGoogle Scholar
  22. 22.
    International Organization for Standardization (2012) ISO 25178(2):2012. Geometrical Product Specifications (GPS) -- Surface texture: Profile method - Terms, definitions and surface texture parametersGoogle Scholar
  23. 23.
    Mukund R, Patel MAB, Eubank PT (1989) Theoretical models of the electrical discharge machining process II: the anode erosion model. J Appl Phys 66:4104–4111CrossRefGoogle Scholar
  24. 24.
    Deltombe R, Kubiak KJ, Bigerelle M (2014) How to select the most relevant 3D roughness parameters of a surface. Scanning 36:150–160.  https://doi.org/10.1002/sca.21113 CrossRefGoogle Scholar
  25. 25.
    Sireli E, Orhon N, Sireli GK (2017) Effects of wire-electro discharge machining process on surface integrity of WC-10Co alloy. Int J Refract Met Hard Mater 64:190–199.  https://doi.org/10.1016/j.ijrmhm.2016.12.001 CrossRefGoogle Scholar
  26. 26.
    Outeiro JC, Chandrasekaran H, Jawahir IS et al (2015) A review of surface integrity in machining and its impact on functional performance and life of machined products. Int J Sustain Manuf 1:203.  https://doi.org/10.1504/ijsm.2008.019234 Google Scholar
  27. 27.
    Roa JJ, Sudharshan Phani P, Oliver WC, Llanes L (2018) Mapping of mechanical properties at microstructural length scale in WC-Co cemented carbides: assessment of hardness and elastic modulus by means of high speed massive nanoindentation and statistical analysis. Int J Refract Met Hard Mater 75:211–217.  https://doi.org/10.1016/j.ijrmhm.2018.04.019 CrossRefGoogle Scholar
  28. 28.
    Klocke F, Hensgen L, Klink A, Ehle L, Schwedt A (2016) Structure and composition of the white layer in the wire-EDM process. Procedia CIRP 42:673–678.  https://doi.org/10.1016/j.procir.2016.02.300 CrossRefGoogle Scholar
  29. 29.
    Kumari S, Datta S, Masanta M, Nandi G, Pal PK (2018) Electro-discharge machining of Inconel 825 super alloy: effects of tool material and dielectric flushing. Silicon 10:2079–2099.  https://doi.org/10.1007/s12633-017-9728-5 CrossRefGoogle Scholar
  30. 30.
    Shabgard MR, Najafabadi AF (2014) The influence of dielectric media on nano-structured tungsten carbide (WC) powder synthesized by electro-discharge process. Adv Powder Technol 25:937–945.  https://doi.org/10.1016/j.apt.2014.01.015 CrossRefGoogle Scholar
  31. 31.
    Ding X, Cheng XD, Yu X et al (2018) Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC–10Co4Cr coating. Trans Nonferrous Met Soc China (English Ed) 28:487–494.  https://doi.org/10.1016/S1003-6326(18)64681-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Giovani Conrado Carlini
    • 1
  • Fred Lacerda Amorim
    • 1
    Email author
  • Walter Lindolfo Weingaertner
    • 2
  1. 1.Pontifícia Universidade Católica do Paraná, PUCPR Mechanical Engineering Graduate Program, PPGEM R. Imaculada ConceiçãoCuritibaBrazil
  2. 2.Department of Mechanical EngineeringUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations