Advertisement

Effect of pouring temperature on microstructure and microsegregation of as-cast aluminum alloy

  • Alexandre Furtado FerreiraEmail author
  • Wemberson Bitencourt Chrisóstimo
  • Roberto Carlos Sales
  • Wysllan Jefferson Lima Garção
  • Nathália de Paula Sousa
ORIGINAL ARTICLE
  • 7 Downloads

Abstract

An experimental investigation of pouring temperature effects on the thermal parameters, microstructure, and microsegregation during directional solidification of the hypoeutectic Al–Cu alloy is presented and discussed. The hypoeutectic Al–4.0 wt.% Cu alloy with superheat temperature is poured at temperatures 682.5, 747.5, and 812.5 °C. The thermal parameters (cooling rate, solidification speed, and local solidification time) are affected by pouring temperature. These, in turn, affects the microstructure arrangement and microsegregation profiles. Experimental growth laws of tertiary dendrite arm spacing relating to the cooling rate have been determined, indicating that increase in thermal parameter was responsible for the refinement effect on dendritic morphology. Results showed that pouring temperatures nearer to the liquidus temperature produced a dendritic array refined, i.e., pouring temperatures few degrees Celsius higher than the liquidus temperature favored the reduction of the tertiary dendrite arm spacings. The results of chemical composition obtained by fluorescence X-ray spectrometry technique confirmed that microsegregation profiles were influenced by pouring temperature, i.e., the microsegregation profiles were shown to move upward with the decrease in the pouring temperature.

Keywords

Solidification Microstructure Microsegregation Pouring temperature 

Notes

References

  1. 1.
    Arun PN, Gnanamoorthy R, Kamaraj M (2010) Microstructural evolution and mechanical properties of oil jet peened aluminium alloy AA6063- T6. Mater Des 31:4066–4075CrossRefGoogle Scholar
  2. 2.
    Sun Y, Baydoğan M, Çimenoğlu H (1999) The effect of deformation before ageing on the wear resistance of an aluminium alloy. Mater Lett 38:221–226CrossRefGoogle Scholar
  3. 3.
    Ayoola WA, Adeosun SO, Sanni OS, Oyetunji A (2012) Effect of casting mould on mechanical properties of 6063 aluminum alloy. J Eng Technol 7(1):89–96Google Scholar
  4. 4.
    Birol Y (2005) The effect of homogenization practice on the microstructure of AA6063 billets. J Mater Process Technol 148(2):250–258CrossRefGoogle Scholar
  5. 5.
    Qian M, DuPont JN (2010) Microsegregation-related pitting corrosion characteristics of AL-6XN superaustenitic stainless steel laser welds. Corros Sci 52:3548–3553CrossRefGoogle Scholar
  6. 6.
    Tang J, Xue X (2009) Numerical simulation of multi-grain structure and prediction of microsegregation in binary Ni–Cu alloy under isothermal conditions. Mater Sci Eng A 499:64–68CrossRefGoogle Scholar
  7. 7.
    Siddiqui RA, Abdullah HA, Al-Belushi KR (2000) Influence of aging parameters on the mechanical properties of 6063 aluminum alloy. J Mater Process Technol 102:234–240CrossRefGoogle Scholar
  8. 8.
    Morando R, Biloni CGS (1970) The development of macrostructure in ingots of increasing size. Metall Trans A 1:1407–1412CrossRefGoogle Scholar
  9. 9.
    Leszezynskii J, Petch NL (1974) The columnar-equiaxed change in super pure aluminum containing transition-metal additions. Metal Science 8:5–8.  https://doi.org/10.1179/msc.1974.8.1.5 CrossRefGoogle Scholar
  10. 10.
    Sales RC, Junior PF, Paradela KG, Garção WJL, Ferreira AF (2018) Effect of solidification processing parameters and silicon content on the dendritic spacing and hardness in hypoeutectic Al-Si alloys. Mater Res 21(6):e20180333.  https://doi.org/10.1590/1980-5373-MR-2018-0333 CrossRefGoogle Scholar
  11. 11.
    Baptista LAS, Ferreira AF, Paradela KG, Silva DM, Castro JA (2018) Experimental investigation of ternary Al-Si-Cu alloy solidified with unsteady-state heat flow conditions. Mater Res 21(3):e20170565.  https://doi.org/10.1590/1980-5373-MR-2017-0565 CrossRefGoogle Scholar
  12. 12.
    Baptista LAS, Paradela KG, Ferreira IL, Garcia A, Ferreira AF (2018) Experimental study of the evolution of tertiary dendritic arms and microsegregation in directionally solidified Al–Si–Cu alloys castings. J Mater Res Tech 8:1515–1521.  https://doi.org/10.1016/j.jmrt.2018.05.021 CrossRefGoogle Scholar
  13. 13.
    Xavier CR, Junior HGD, Castro JA, Ferreira AF (2016) Numerical predictions for the thermal history, microstructure and hardness distributions at the HAZ during welding of low alloy steels. Mater Res 19(3):520–533CrossRefGoogle Scholar
  14. 14.
    Srinivasan A, Pillai UTS, Pai BC (2006) Effect of pouring temperature on the microstructure and the mechanical properties of low pressure sand cast LM25 (Al-7Si-0.3Mg) alloy. Int J Microstruct Mater Prop 1(2):139–144Google Scholar
  15. 15.
    Jahangiria A, Marashia SPH, Mohammadalihab M, Ashoftea V (2017) The effect of pressure and pouring temperature on the porosity, microstructure, hardness and yield stress of AA2024 aluminum alloy during the squeeze casting process. J Mater Process Technol 245:1–6CrossRefGoogle Scholar
  16. 16.
    Yong MS, Clegg AJ (2004) Process optimization for a squeeze cast magnesium alloy. J Mater Process Technol 145:134–141Google Scholar
  17. 17.
    Hasan A, Suyitno S (2015) Effect pouring temperature on casting defect susceptibility of hot tearing in metal alloy Al-Si. Appl Mech Mater 758:95–99CrossRefGoogle Scholar
  18. 18.
    Singh M, Bajwa M, Sharma R, Arora H (2013) Behaviour of aluminium alloy casting with the variation of pouring temperature and permeability of sand. Int J Sci Eng Res 4(6):1497–1503Google Scholar
  19. 19.
    Junior PF (2019) Experimental and numerical analysis of the columnar to equiaxed transition in unidirectional solidification of aluminium binary alloys under transient conditions of heat extraction. (unpublished Ph.D. thesis), Federal Fluminense University, Rio de Janeiro, Brazil. 2019Google Scholar
  20. 20.
    Silva AP, Spinelli JE, Garcia A (2009) Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys. J Alloys Compd 480:485–493CrossRefGoogle Scholar
  21. 21.
    Campbell J (2003) Castings, 2nd edn. Butterworth-Heinemann, LondonGoogle Scholar
  22. 22.
    Burton JA, Prim RC, Slichter WP (1953) The distribution of solute in crystals grown from the melt. Part I. Theoretical. J Chem Phys 21:1987–1990CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Engenharia MetalúrgicaUniversidade Federal FluminenseVolta RedondaBrazil
  2. 2.Instituto Federal do Rio de Janeiro, Campus Volta RedondaVolta RedondaBrazil

Personalised recommendations