Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process

  • Niknam MomenzadehEmail author
  • Hadi Miyanaji
  • Thomas A. Berfield


Polyvinylidene fluoride (PVDF), a thermoplastic material with excellent resilience and piezoelectric potential, is a natural candidate for use in filament-based additive manufacturing technologies. However, due to the high thermal expansion and low surface energy of homopolymer PVDF, fabrication of this polymer via extrusion deposition processes is challenging, often resulting in substantial stress accumulation and unwanted distortion in printed parts. To address these challenges, this work investigates the effects of adding microscale zirconium tungstate particulate to improve the printability of PVDF materials. Zirconium tungstate was specifically selected because for its demonstrated negative coefficient of thermal expansion over the range of standard filament extrusion deposition method processing temperatures. Composite filament specimens were characterized with respect to mechanical, thermal, and microstructural properties. Compared with pure homopolymer printed specimens, results show that the particulate additives effectively lowered the net coefficient of thermal expansion at the expense of yield strength and total elongation to failure, while the semi-crystalline structure showed a mild reduction in β-phase formation associated with increasing particulate content.


Additive manufacturing Warping Coefficient of thermal expansion Material extrusion additive manufacturing 



  1. 1.
    Novakova-Marcincinova L, Kuric I (2012) Basic and advanced materials for fused deposition modeling rapid prototyping technology. Manuf Ind Eng 11(1):24–27Google Scholar
  2. 2.
    Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci 48(3):514–525CrossRefGoogle Scholar
  3. 3.
    Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126CrossRefGoogle Scholar
  4. 4.
    Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257CrossRefGoogle Scholar
  5. 5.
    Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRefGoogle Scholar
  6. 6.
    Salimi A, Yousefi A (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRefGoogle Scholar
  7. 7.
    Tarbuttona J, Leb T, Helfrichb G, Kirkpatrickb M (2017) Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manuf 10:982–989CrossRefGoogle Scholar
  8. 8.
    Mhetre MR, Abhyankar HK (2017) Human exhaled air energy harvesting with specific reference to PVDF film. Eng Sci Technol Int J 20(1):332–339CrossRefGoogle Scholar
  9. 9.
    Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE/ASME Trans Mechatron 19(4):1260–1267CrossRefGoogle Scholar
  10. 10.
    Seminara L et al (2013) Piezoelectric polymer transducer arrays for flexible tactile sensors. IEEE Sensors J 13(10):4022–4029CrossRefGoogle Scholar
  11. 11.
    Jafer E, Arshak K (2008) The use of PE/PVDF pressure and temperature sensors in smart wireless sensor network system developed for environmental monitoring. Sens Lett 6(4):477–489CrossRefGoogle Scholar
  12. 12.
    Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRefGoogle Scholar
  13. 13.
    Mohebbi A, Mighri F, Ajji A, Rodrigue D (2018) Cellular polymer ferroelectret: a review on their development and their piezoelectric properties. Adv Polym Technol 37(2):468–483CrossRefGoogle Scholar
  14. 14.
    Porter DA, Hoang TV, Berfield TA (2017) Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit Manuf 13:81–92CrossRefGoogle Scholar
  15. 15.
    Kirkpatrick MB et al (2016) Characterization of 3D printed piezoelectric sensors: determination of d 33 piezoelectric coefficient for 3D printed polyvinylidene fluoride sensors. In: SENSORS, 2016 IEEE. IEEEGoogle Scholar
  16. 16.
    Kim H, Fernando T, Li M, Lin Y, Tseng TLB (2018) Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J Compos Mater 52(2):197–206CrossRefGoogle Scholar
  17. 17.
    Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng TL(B) (2017) Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater Struct 26(8):085027CrossRefGoogle Scholar
  18. 18.
    Cheng S, Lau KT, Liu T, Zhao Y, Lam PM, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B 40(7):650–654CrossRefGoogle Scholar
  19. 19.
    Kantaros A, Karalekas D (2013) Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des 50:44–50CrossRefGoogle Scholar
  20. 20.
    Economidou SN, Karalekas D (2016) Optical sensor-based measurements of thermal expansion coefficient in additive manufacturing. Polym Test 51:117–121CrossRefGoogle Scholar
  21. 21.
    Wang Y, Cakmak M (1998) Hierarchical structure gradients developed in injection-molded PVDF and PVDF–PMMA blends. I. Optical and thermal analysis. J Appl Polym Sci 68(6):909–926CrossRefGoogle Scholar
  22. 22.
    Zhong GJ, Li ZM (2005) Injection molding-induced morphology of thermoplastic polymer blends. Polym Eng Sci 45(12):1655–1665CrossRefGoogle Scholar
  23. 23.
    Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777CrossRefGoogle Scholar
  24. 24.
    Lous GM, Cornejo IA, McNulty TF, Safari A, Danforth SC (2000) Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics. J Am Ceram Soc 83(1):124–128CrossRefGoogle Scholar
  25. 25.
    Masood S, Song W (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25(7):587–594CrossRefGoogle Scholar
  26. 26.
    Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B 80:369–378CrossRefGoogle Scholar
  27. 27.
    Chu X et al (2010) Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 50(2):84–88CrossRefGoogle Scholar
  28. 28.
    Luo N, Xu R, Yang M, Yuan X, Zhong H, Fan Y (2015) Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization. J Environ Sci 38:24–35CrossRefGoogle Scholar
  29. 29.
    Oddone V, Wimpory RC, Reich S (2019) Understanding the negative thermal expansion in planar graphite–metal composites. J Mater Sci 54(2):1267–1274CrossRefGoogle Scholar
  30. 30.
    Evans JS (1999) Negative thermal expansion materials. J Chem Soc Dalton Transactions (19):3317–3326Google Scholar
  31. 31.
    Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13(1):013001CrossRefGoogle Scholar
  32. 32.
    Niknam Momenzadeh HM, Porter D, Berfield T (2018) Polyvinylidene fluoride (PVDF) as a feedstock material in material extrusion additive manufacturing process. Rapid Prototyp JGoogle Scholar
  33. 33.
    Turner, P.S., The problem of thermal-expansion stresses in reinforced plastics. 1942Google Scholar
  34. 34.
    Johnson RR, Kural MH, Mackey GB (1981) Thermal expansion properties of composite materials. Lockheed Missiles and Space Co Inc, SunnyvaleGoogle Scholar
  35. 35.
    James J et al (2001) A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol 12(3):R1–R15CrossRefGoogle Scholar
  36. 36.
    Forster AM (2015) Materials testing standards for additive manufacturing of polymer materials. ST, Department of Commerce, NIGoogle Scholar
  37. 37.
    Dizon JRC et al (2017) Mechanical characterization of 3D-printed polymers. Addit ManufGoogle Scholar
  38. 38.
    Huan Y, Liu Y, Yang Y, Wu Y (2007) Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J Appl Polym Sci 104(2):858–862CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Niknam Momenzadeh
    • 1
    Email author
  • Hadi Miyanaji
    • 2
  • Thomas A. Berfield
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Mechanical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations