On-machine surface measurement and applications for ultra-precision machining: a state-of-the-art review

  • Duo LiEmail author
  • Bo Wang
  • Zhen Tong
  • Liam Blunt
  • Xiangqian Jiang


Surface measurement is essential to enhance accuracy and efficiency in ultra-precision machining. In order to increase the measurement availability and efficiency, offline lab-based solutions are shifting towards the use of surface metrology upon manufacturing platforms. With the lack of remounting errors, on-machine surface measurement (OMSM) allows the deterministic assessment of manufactured surfaces just-in-time and also provides valuable feedback to the process control of ultra-precision machining. This paper is aimed at reviewing the state-of-the-art OMSM and applications in the ultra-precision machining process. The benefits and considerations on the integration of metrology are discussed. The merits and limitations among different OMSM types are compared as well. Finally, the challenges and outlook of the ultra-precision machining-metrology integration are highlighted.


On-machine surface measurement Metrology Ultra-precision machining Machining-metrology integration 



The authors also would like to sincerely thank the reviewers for their valuable comments on this work.

Funding information

This work is supported by the UK’s Engineering and Physical Sciences Research Council (EPSRC) funding (Grant Ref: EP/P006930/1) and China Scholarship Council (CSC).


  1. 1.
    Brinksmeier E, Gläbe R, Schönemann L (2012) Review on diamond-machining processes for the generation of functional surface structures. CIRP J Manuf Sci Technol 5(1):1–7CrossRefGoogle Scholar
  2. 2.
    Yu DP, Gan SW, Wong SY, Hong GS, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol 63(9–12):1137–1152CrossRefGoogle Scholar
  3. 3.
    Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256CrossRefGoogle Scholar
  4. 4.
    Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284CrossRefGoogle Scholar
  5. 5.
    Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675CrossRefGoogle Scholar
  6. 6.
    Jiang X (2012) Precision surface measurement. Philos Trans R Soc London, Ser A 370(1973):4089–4114CrossRefGoogle Scholar
  7. 7.
    Jiang X, Scott P, Whitehouse D (2007) Freeform surface characterisation-a fresh strategy. CIRP Ann Manuf Technol 56(1):553–556CrossRefGoogle Scholar
  8. 8.
    Jiang XJ, Whitehouse DJ (2012) Technological shifts in surface metrology. CIRP Ann Manuf Technol 61(2):815–836CrossRefGoogle Scholar
  9. 9.
    Jiang X, Scott PJ, Whitehouse DJ, Blunt L Paradigm shifts in surface metrology. Part I. Historical philosophy. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 2007, vol 2085. The Royal Society, London, pp 2049–2070Google Scholar
  10. 10.
    Jiang X, Scott PJ, Whitehouse DJ, Blunt L Paradigm shifts in surface metrology. Part II. The current shift. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 2007, vol 2085. The Royal Society, London, pp 2071–2099Google Scholar
  11. 11.
    Walker D, Beaucamp A, Doubrovski V, Dunn C, Evans R, Freeman R, Kelchner J, McCavana G, Mortonb R, Riley D (2006) Automated optical fabrications: first results from the new precessions 1.2 m CNC polishing machine. Proc SPIE:627309Google Scholar
  12. 12.
    Elrawemi M, Blunt L, Muhamedsalih H, Gao F, Fleming L (2015) Implementation of in process surface metrology for R2R flexible PV barrier films. Int J Autom Technol 9(3):312–321CrossRefGoogle Scholar
  13. 13.
    Zhang X, Zeng Z, Liu X, Fang F (2015) Compensation strategy for machining optical freeform surfaces by the combined on-and off-machine measurement. Opt Express 23(19):24800–24810CrossRefGoogle Scholar
  14. 14.
    Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol 62(2):823–846CrossRefGoogle Scholar
  15. 15.
    Hansen HN, Carneiro K, Haitjema H, De Chiffre L (2006) Dimensional micro and nano metrology. CIRP Ann Manuf Technol 55(2):721–743CrossRefGoogle Scholar
  16. 16.
    Shore P, Parr-Burman P (2004) Manufacture of large mirrors for ELTs: a fresh perspective. In: Optical systems design. International Society for Optics and Photonics, Bellingham, pp 55–62Google Scholar
  17. 17.
    Vacharanukul K, Mekid S (2005) In-process dimensional inspection sensors. Measurement 38(3):204–218CrossRefGoogle Scholar
  18. 18.
    Novak E (2014) Advanced defect and metrology solutions. In: SPIE sensing technology+ applications. International Society for Optics and Photonics, Bellingham, p 91100G-91100G-91108Google Scholar
  19. 19.
    Li D, Tong Z, Jiang X, Blunt L, Gao F (2018) Calibration of an interferometric on-machine probing system on an ultra-precision turning machine. Measurement 118:96–104CrossRefGoogle Scholar
  20. 20.
    Li D, Jiang X, Tong Z, Blunt L (2018) Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine. Micromachines 9(7):334CrossRefGoogle Scholar
  21. 21.
    Gao W, Kiyono S (1997) On-machine roundness measurement of cylindrical workpieces by the combined three-point method. Measurement 21(4):147–156CrossRefGoogle Scholar
  22. 22.
    Gao W, Yokoyama J, Kojima H, Kiyono S (2002) Precision measurement of cylinder straightness using a scanning multi-probe system. Precis Eng 26(3):279–288CrossRefGoogle Scholar
  23. 23.
    Shibuya A, Arai Y, Yoshikawa Y, Gao W, Nagaike Y, Nakamura Y (2010) A spiral scanning probe system for micro-aspheric surface profile measurement. Int J Adv Manuf Technol 46(9–12):845–862CrossRefGoogle Scholar
  24. 24.
    Giusca CL, Leach RK, Helery F (2012) Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness. Meas Sci Technol 23(6):065005CrossRefGoogle Scholar
  25. 25.
    Blunt L, Jiang X (2003) Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards “surfstand”. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Suzuki H, Onishi T, Moriwaki T, Fukuta M, Sugawara J (2008) Development of a 45° tilted on-machine measuring system for small optical parts. CIRP Ann Manuf Technol 57(1):411–414CrossRefGoogle Scholar
  27. 27.
    Chen F, Yin S, Huang H, Ohmori H, Wang Y, Fan Y, Zhu Y (2010) Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int J Mach Tools Manuf 50(5):480–486CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Gao W, Aoki J, Ju B-F, Kiyono S (2007) Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine. Precis Eng 31(3):304–309CrossRefGoogle Scholar
  30. 30.
    Ju B-F, Chen Y-L, Ge Y (2011) The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters. Rev Sci Instrum 82(1):013707CrossRefGoogle Scholar
  31. 31.
    Zhu W-L, Yang S, Ju B-F, Jiang J, Sun A (2016) Scanning tunneling microscopy-based on-machine measurement for diamond fly cutting of micro-structured surfaces. Precis Eng 43:308–314CrossRefGoogle Scholar
  32. 32.
    Zhu W-L, Yang S, Ju B-F, Jiang J, Sun A (2015) On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate. Meas Sci Technol 26(7):075003CrossRefGoogle Scholar
  33. 33.
    Noh YJ, Arai Y, Gao W (2009) Improvement of a fast tool control unit for cutting force measurement in diamond turning of micro-lens array. Int J Surf Sci Eng 3(3):227–241CrossRefGoogle Scholar
  34. 34.
    Lee K, Noh Y, Arai Y, Shimizu Y, Gao W (2011) Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. International Journal of Precision Technology 2(2–3):211–225CrossRefGoogle Scholar
  35. 35.
    Chen Y-L, Wang S, Shimizu Y, Ito S, Gao W, Ju B-F (2015) An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor. Precis Eng 39:134–142CrossRefGoogle Scholar
  36. 36.
    Chen Y-L, Gao W, Ju B-F, Shimizu Y, Ito S (2014) A measurement method of cutting tool position for relay fabrication of microstructured surface. Meas Sci Technol 25(6):064018CrossRefGoogle Scholar
  37. 37.
    Nomura T, Kamiya K, Miyashiro H, Okuda S, Tashiro H, Yoshikawa K (1998) Shape measurements of mirror surfaces with a lateral-shearing interferometer during machine running. Precis Eng 22(4):185–189. CrossRefGoogle Scholar
  38. 38.
    Shore P, Morantz P, Lee D, McKeown P (2006) Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope. CIRP Ann Manuf Technol 55(1):543–546CrossRefGoogle Scholar
  39. 39.
    Wyant JC (2003) Dynamic interferometry. Opt Photonics News 14(4):36–41CrossRefGoogle Scholar
  40. 40.
    King CW (2010) Integrated on-machine metrology systems. In: International symposium on ultraprecision engineering and nanotechnology (ISUPEN), Japan Society for Precision Engineering Semestrial Meeting 2010 JSPE Autumn ConferenceGoogle Scholar
  41. 41.
    Williamson J, Martin H, Jiang X (2016) High resolution position measurement from dispersed reference interferometry using template matching. Opt Express 24(9):10103–10114CrossRefGoogle Scholar
  42. 42.
    Li D, Jiang X, Tong Z, Blunt L (2019) Development and application of interferometric on-machine surface measurement for ultraprecision turning process. J Manuf Sci Eng 141(1):014502CrossRefGoogle Scholar
  43. 43.
    Jiang X (2011) In situ real-time measurement for micro-structured surfaces. CIRP Ann Manuf Technol 60(1):563–566CrossRefGoogle Scholar
  44. 44.
    Muhamedsalih H (2013) Investigation of wavelength scanning interferometry for embedded metrology. University of Huddersfield, HuddersfieldGoogle Scholar
  45. 45.
    Röttinger C, Faber C, Olesch E, Häusler G, Kurz M, Uhlmann E Deflectometry for ultra precision machining–measuring without Rechucking. In: Proc. DGaO, 2011. p P28Google Scholar
  46. 46.
    Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835CrossRefGoogle Scholar
  47. 47.
    Zou X, Zhao X, Li G, Li Z, Sun T (2016) Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine. Int J Adv Manuf Technol:1–10Google Scholar
  48. 48.
    Niehaus F, Huttenhuis S (2015) Danger T new opportunities in freeform manufacturing using a long stroke fast tool system and integrated metrology. In: Optifab 2015. International Society for Optics and Photonics, Bellingham, p 96331EGoogle Scholar
  49. 49.
  50. 50.
    Gao W, Tano M, Sato S, Kiyono S (2006) On-machine measurement of a cylindrical surface with sinusoidal micro-structures by an optical slope sensor. Precis Eng 30(3):274–279. CrossRefGoogle Scholar
  51. 51.
    Li D, Cheung CF, Ren M, Whitehouse D, Zhao X (2015) Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces. Opt Lett 40(22):5271–5274CrossRefGoogle Scholar
  52. 52.
    Leach R (2001) The measurement of surface texture using stylus instruments. National Physical Laboratory, TeddingtonGoogle Scholar
  53. 53.
    Zhang S, To S, Wang S, Zhu Z (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95CrossRefGoogle Scholar
  54. 54.
    Wang J, Jiang X, Blunt L, Leach RK, Scott PJ (2012) Intelligent sampling for the measurement of structured surfaces. Meas Sci Technol 23(8):085006CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.EPSRC Future Metrology HubUniversity of HuddersfieldHuddersfieldUK
  2. 2.Centre for Precision EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations