Advertisement

A review of friction stir–based processes for joining dissimilar materials

  • Kai Chen
  • Xun Liu
  • Jun Ni
ORIGINAL ARTICLE

Abstract

This paper covers a detailed study of friction stir–related processes with the focus on joining dissimilar materials. First, the effects of the process parameters and tool geometries on weld mechanical properties, defects, and weld microstructure along with the formation and growth of intermetallics are systematically reviewed. Process-structure-property relationships are discussed in details. Second, the paper summarizes different physical models that have been developed for friction stir–related process. A specific session on modeling dissimilar material joining is provided. The objective of these models is to determine the temperature profile, stress, and strain distribution along with material flow field based on the input process parameters and tool geometries. By further implementing these results into microstructure evolution and material property models, the dissimilar material weld mechanical performance can be predicted eventually. Third, recently developed friction stir variants for process improvement and joint quality enhancement are discussed. Finally, potential future research directions are recommended in conclusion.

Keywords

Friction stir–related process Friction stir welding (FSW) Friction stir spot welding (FSSW) Dissimilar materials Process parameters Physics modeling Innovative variants of the friction stir–related process 

Notes

References

  1. 1.
    Han L, Thornton M, Li D, Shergold M (2011) Effect of governing metal thickness and stack orientation on weld quality and mechanical behaviour of resistance spot welding of AA5754 aluminium. Mater Des 32(4):2107–2114CrossRefGoogle Scholar
  2. 2.
    Nanda T, Singh V, Singh V, Chakraborty A, Sharma S (2019) Third generation of advanced high-strength steels: Processing routes and properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(2):209–238Google Scholar
  3. 3.
    Sun X, Stephens EV, Khaleel MA (2008) Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions. Eng Fail Anal 15(4):356–367CrossRefGoogle Scholar
  4. 4.
    Kuziak R, Kawalla R, Waengler S (2008) Advanced high strength steels for automotive industry. Arch Civil Mech Eng 8(2):103–117CrossRefGoogle Scholar
  5. 5.
    Kwon O, Lee KY, Kim GS, Chin KG (2010) New Trends in Advanced High Strength Steel Developments for Automotive Application. Materials Science Forum 638–642:136–141Google Scholar
  6. 6.
    Matlock DK, Speer JG, Moor ED, Gibbs PJ (2012) Recent developments in advanced high strength sheet steels for automotive applications: an overview. JESTECH 15(1):1–12Google Scholar
  7. 7.
    Long X, Khanna SK (2007) Fatigue properties and failure characterization of spot welded high strength steel sheet. Int J Fatigue 29(5):879–886CrossRefGoogle Scholar
  8. 8.
    Badarinarayan H, Yang Q, Zhu S (2009) Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. Int J Mach Tools Manuf 49(2):142–148CrossRefGoogle Scholar
  9. 9.
    Qiu R, Iwamoto C, Satonaka S (2009) The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding. Mater Charact 60(2):156–159CrossRefGoogle Scholar
  10. 10.
    Qiu R, Iwamoto C, Satonaka S (2009) Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate. J Mater Process Technol 209(8):4186–4193CrossRefGoogle Scholar
  11. 11.
    Sun X, Stephens EV, Khaleel MA, Shao H, Kimchi M (2004) Resistance spot welding of aluminum alloy to steel with transition material-from process to performance-part I: experimental study. Weld J 83:188-SGoogle Scholar
  12. 12.
    Qiu R, Satonaka S, Iwamoto C (2009) Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels. Mater Des 30(9):3686–3689CrossRefGoogle Scholar
  13. 13.
    Ambroziak A, Korzeniowski M (2010) Using resistance spot welding for joining aluminium elements in automotive industry. Arch Civil Mech Eng 10(1):5–13CrossRefGoogle Scholar
  14. 14.
    Hao M, Osman K, Boomer D, Newton C (1996) Developments in characterization of resistance spot welding of aluminum. Weld J 75(1):1–4 Including Welding Research SupplementGoogle Scholar
  15. 15.
    Florea R, Bammann D, Yeldell A, Solanki K, Hammi Y (2013) Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy. Mater Des 45:456–465CrossRefGoogle Scholar
  16. 16.
    Lindenburg R, Braton N (1976) Aluminum welding, welding and other joining processes. Allyn and Bacon, Inc., BostonGoogle Scholar
  17. 17.
    Han L, Thornton M, Boomer D, Shergold M (2010) Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding. J Mater Process Technol 210(8):1076–1082CrossRefGoogle Scholar
  18. 18.
    Fukumoto S, Lum I, Biro E, Boomer D, Zhou Y (2003) Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182. Weld J 82(11):307-SGoogle Scholar
  19. 19.
    Florea R, Solanki K, Bammann D, Baird J, Jordon J, Castanier M (2012) Resistance spot welding of 6061-T6 aluminum: failure loads and deformation. Mater Des 34:624–630CrossRefGoogle Scholar
  20. 20.
    Mishra RS, Ma Z (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1):1–78CrossRefGoogle Scholar
  21. 21.
    Thomas W, Nicholas E, Needham J, Murch M, Temple-Smith P, Dawes C (1991) Friction stir butt welding, International Patent Appl. n. PCT/GB92/02203 and GB Patent Appl. n. 9125978.8,” US Patent(5,460,317)Google Scholar
  22. 22.
    Rao H, Yuan W, Badarinarayan H (2015) Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des (1980–2015) 66:235–245CrossRefGoogle Scholar
  23. 23.
    Chen K, Liu X, Ni J. Effects of process parameters on friction stir spot welding of aluminum alloy to advanced high-strength steel, Proc. ASME 2016 11th International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers, pp V001T002A011–V001T002A011Google Scholar
  24. 24.
    Bilici MK, Yükler Aİ, Kurtulmuş M (2011) The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater Des 32(7):4074–4079CrossRefGoogle Scholar
  25. 25.
    Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023CrossRefGoogle Scholar
  26. 26.
    Seidel T, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32(11):2879–2884CrossRefGoogle Scholar
  27. 27.
    Balasubramanian V (2008) Relationship between base metal properties and friction stir welding process parameters. Mater Sci Eng A 480(1–2):397–403CrossRefGoogle Scholar
  28. 28.
    Iwashita T (2003) Method and apparatus for joining, Google PatentsGoogle Scholar
  29. 29.
    Feng Z, Santella M, David S, Steel R, Packer S, Pan T, Kuo M, Bhatnagar R (2005) Friction stir spot welding of advanced high-strength steels-a feasibility study, No. 0148-7191, SAE Technical PaperGoogle Scholar
  30. 30.
    Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32(8–9):4461–4470CrossRefGoogle Scholar
  31. 31.
    Freeney T, Sharma S, Mishra R (2006) Effect of welding parameters on properties of 5052 Al friction stir spot welds, No. 0148-7191, SAE Technical PaperGoogle Scholar
  32. 32.
    Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49(11):814–823CrossRefGoogle Scholar
  33. 33.
    Pathak N, Bandyopadhyay K, Sarangi M, Panda SK (2013) Microstructure and mechanical performance of friction stir spot-welded aluminum-5754 sheets. J Mater Eng Perform 22(1):131–144CrossRefGoogle Scholar
  34. 34.
    Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int J Mach Tools Manuf 47(15):2230–2236CrossRefGoogle Scholar
  35. 35.
    Wang D-A, Lee S-C (2007) Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. J Mater Process Technol 186(1):291–297CrossRefGoogle Scholar
  36. 36.
    Wang D-A, Chen C-H (2009) Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets. J Mater Process Technol 209(1):367–375CrossRefGoogle Scholar
  37. 37.
    Awang M, Mucino VH (2010) Energy generation during friction stir spot welding (FSSW) of Al 6061-T6 plates. Mater Manuf Process 25(1–3):167–174CrossRefGoogle Scholar
  38. 38.
    Rodrigues D, Loureiro A, Leitao C, Leal R, Chaparro B, Vilaça P (2009) Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des 30(6):1913–1921CrossRefGoogle Scholar
  39. 39.
    Shen Z, Yang X, Yang S, Zhang Z, Yin Y (2014) Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy. Mater Des (1980–2015) 54:766–778CrossRefGoogle Scholar
  40. 40.
    Mitlin D, Radmilovic V, Pan T, Chen J, Feng Z, Santella M (2006) Structure–properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum. Mater Sci Eng A 441(1):79–96CrossRefGoogle Scholar
  41. 41.
    Su J-Q, Nelson T, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 51(3):713–729CrossRefGoogle Scholar
  42. 42.
    Shen Z, Yang X, Zhang Z, Cui L, Li T (2013) Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des 44:476–486CrossRefGoogle Scholar
  43. 43.
    Bozzi S, Helbert-Etter A, Baudin T, Criqui B, Kerbiguet J (2010) Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater Sci Eng A 527(16):4505–4509CrossRefGoogle Scholar
  44. 44.
    Liyanage T, Kilbourne J, Gerlich AP, North TH (2009) Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join 14(6):500–508CrossRefGoogle Scholar
  45. 45.
    Taban E, Gould JE, Lippold JC (2010) Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization. Mater Des 31(5):2305–2311CrossRefGoogle Scholar
  46. 46.
    Chen YC, Gholinia A, Prangnell PB (2012) Interface structure and bonding in abrasion circle friction stir spot welding: a novel approach for rapid welding aluminium alloy to steel automotive sheet. Mater Chem Phys 134(1):459–463CrossRefGoogle Scholar
  47. 47.
    Da Silva A, Aldanondo E, Alvarez P, Arruti E, Echeverria A (2010) Friction stir spot welding of AA 1050 Al alloy and hot stamped boron steel (22MnB5). Sci Technol Weld Join 15(8):682–687CrossRefGoogle Scholar
  48. 48.
    Fereiduni E, Movahedi M, Kokabi A (2015) Aluminum/steel joints made by an alternative friction stir spot welding process. J Mater Process Technol 224:1–10CrossRefGoogle Scholar
  49. 49.
    Shi Y, Yue Y, Zhang L, Ji S, Wang Y (2018) Refill friction stir spot welding of 2198-T8 aluminum alloy. Trans Indian Inst Metals 71(1):139–145CrossRefGoogle Scholar
  50. 50.
    Schilling C, dos Santos J (2004) Method and device for joining at least two adjoining work pieces by friction welding, Google PatentsGoogle Scholar
  51. 51.
    Zhao YQ, Liu HJ, Chen SX, Lin Z, Hou JC (2014) Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Mater Des (1980–2015) 62:40–46CrossRefGoogle Scholar
  52. 52.
    Reimann M, Goebel J, dos Santos JF (2017) Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding. Mater Des 132:283–294CrossRefGoogle Scholar
  53. 53.
    Chen Y, Chen J, Shalchi Amirkhiz B, Worswick MJ, Gerlich AP (2015) Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds. Sci Technol Weld Join 20(6):494–501CrossRefGoogle Scholar
  54. 54.
    Shen Z, Ding Y, Chen J, Gerlich A (2016) Comparison of fatigue behavior in Mg/Mg similar and Mg/steel dissimilar refill friction stir spot welds. Int J Fatigue 92:78–86CrossRefGoogle Scholar
  55. 55.
    Shen Z, Chen J, Ding Y, Hou J, Shalchi Amirkhiz B, Chan K, Gerlich A (2017) Role of interfacial reaction on the mechanical performance of Al/steel dissimilar refill friction stir spot welds. Sci Technol Weld Join:1–16Google Scholar
  56. 56.
    Sahu PK, Pal S, Pal SK, Jain R (2016) Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints. J Mater Process Technol 235:55–67CrossRefGoogle Scholar
  57. 57.
    Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater Des 59:50–62CrossRefGoogle Scholar
  58. 58.
    Habibnia M, Shakeri M, Nourouzi S, Givi MB (2015) Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int J Adv Manuf Technol 76(5–8):819–829CrossRefGoogle Scholar
  59. 59.
    Xue P, Ni D, Wang D, Xiao B, Ma Z (2011) Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Mater Sci Eng A 528(13–14):4683–4689CrossRefGoogle Scholar
  60. 60.
    Fu B, Qin G, Li F, Meng X, Zhang J, Wu C (2015) Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol 218:38–47CrossRefGoogle Scholar
  61. 61.
    Yue Y, Li Z, Ji S, Huang Y, Zhou Z (2016) Effect of reverse-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy. J Mater Sci Technol 32(7):671–675CrossRefGoogle Scholar
  62. 62.
    Ge Z, Gao S, Ji S, Yan D (2018) Effect of pin length and welding speed on lap joint quality of friction stir welded dissimilar aluminum alloys. Int J Adv Manuf Technol 98(1–9):1461–1469CrossRefGoogle Scholar
  63. 63.
    Balakrishnan M, Leitão C, Arruti E, Aldanondo E, Rodrigues D (2018) Influence of pin imperfections on the tensile and fatigue behaviour of AA 7075-T6 friction stir lap welds. Int J Adv Manuf Technol:1–11Google Scholar
  64. 64.
    Saeid T, Abdollah-Zadeh A, Sazgari B (2010) Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. J Alloys Compd 490(1–2):652–655CrossRefGoogle Scholar
  65. 65.
    Chen Y, Nakata K (2009) Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel. Mater Des 30(9):3913–3919CrossRefGoogle Scholar
  66. 66.
    Lee C-Y, Choi D-H, Yeon Y-M, Jung S-B (2009) Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs. Sci Technol Weld Join 14(3):216–220CrossRefGoogle Scholar
  67. 67.
    Chowdhury S, Chen D, Bhole S, Cao X, Wanjara P (2012) Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys. Mater Sci Eng A 556:500–509CrossRefGoogle Scholar
  68. 68.
    Sato Y, Shiota A, Kokawa H, Okamoto K, Yang Q, Kim C (2010) Effect of interfacial microstructure on lap shear strength of friction stir spot weld of aluminium alloy to magnesium alloy. Sci Technol Weld Join 15(4):319–324CrossRefGoogle Scholar
  69. 69.
    Prasomthong S, Sangsiri P, Kimapong K (2015) Friction stir spot welding of AA5052 aluminum alloy and C11000 copper lap joint. Int J Adv Cult Technol 3(1):145–152CrossRefGoogle Scholar
  70. 70.
    Triwanapong S, Kaewwichit J, Roybang W, Kimapong K (2015) Optimization of friction stir spot welding parameters of lap joint between AA1100 aluminum alloy and SGACD zinc-coated steel. Int J Adv Cult Technol 3(1):161–168CrossRefGoogle Scholar
  71. 71.
    Sun YF, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater Des 47:350–357CrossRefGoogle Scholar
  72. 72.
    Figner MSG, Vallant R, Weinberger MST, Enzinger N, Schröttner H, Paśič H (2009) Friction stir spot welds between aluminium and steel automotive sheets: influence of welding parameters on mechanical properties and microstructure. Weld World 53(1–2):R13–R23CrossRefGoogle Scholar
  73. 73.
    Hong SH, Sung S-J, Pan J (2015) Failure mode and fatigue behavior of dissimilar friction stir spot welds in lap-shear specimens of transformation-induced plasticity steel and hot-stamped boron steel sheets. J Manuf Sci Eng 137(5):051023CrossRefGoogle Scholar
  74. 74.
    Piccini JM, Svoboda HG (2015) Effect of pin length on friction stir spot welding (FSSW) of dissimilar aluminum-steel joints. Procedia Mater Sci 9:504–513CrossRefGoogle Scholar
  75. 75.
    Lin Y-C, Chen J-N (2015) Influence of process parameters on friction stir spot welded aluminum joints by various threaded tools. J Mater Process Technol 225:347–356CrossRefGoogle Scholar
  76. 76.
    Shen Z, Ding Y, Gopkalo O, Diak B, Gerlich A (2018) Effects of tool design on the microstructure and mechanical properties of refill friction stir spot welding of dissimilar Al alloys. J Mater Process Technol 252:751–759CrossRefGoogle Scholar
  77. 77.
    Suhuddin U, Fischer V, Kroeff F, Dos Santos J (2014) Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys. Mater Sci Eng A 590:384–389CrossRefGoogle Scholar
  78. 78.
    Dong H, Chen S, Song Y, Guo X, Zhang X, Sun Z (2016) Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets. Mater Des 94:457–466CrossRefGoogle Scholar
  79. 79.
    Suhuddin U, Fischer V, Kostka A, dos Santos J (2017) Microstructure evolution in refill friction stir spot weld of a dissimilar Al–Mg alloy to Zn-coated steel. Sci Technol Weld Join 22(8):658–665CrossRefGoogle Scholar
  80. 80.
    Ding Y, Shen Z, Gerlich A (2017) Refill friction stir spot welding of dissimilar aluminum alloy and AlSi coated steel. J Manuf Process 30:353–360CrossRefGoogle Scholar
  81. 81.
    Fukada S, Ohashi R, Fujimoto M, Okada H Refill friction stir spot welding of dissimilar materials consisting of A6061 and hot dip zinc-coated steel sheets, Proc. Proceedings of the 1st international joint symposium on joining and welding. Elsevier, Amsterdam, pp 183–187Google Scholar
  82. 82.
    Reimann M, Gartner T, Suhuddin U, Göbel J, dos Santos JF (2016) Keyhole closure using friction spot welding in aluminum alloy 6061–T6. J Mater Process Technol 237:12–18CrossRefGoogle Scholar
  83. 83.
    Cao JY, Wang M, Kong L, Guo LJ (2016) Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J Mater Process Technol 230:254–262CrossRefGoogle Scholar
  84. 84.
    Rosendo T, Parra B, Tier M, Da Silva A, Dos Santos J, Strohaecker T, Alcântara N (2011) Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Mater Des 32(3):1094–1100CrossRefGoogle Scholar
  85. 85.
    Oliveira P, Amancio-Filho S, Dos Santos J, Hage E (2010) Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett 64(19):2098–2101CrossRefGoogle Scholar
  86. 86.
    Tier M, Rosendo T, dos Santos J, Huber N, Mazzaferro J, Mazzaferro C, Strohaecker T (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol 213(6):997–1005CrossRefGoogle Scholar
  87. 87.
    Campanelli LC, Suhuddin UFH, Antonialli AÍS, dos Santos JF, de Alcantara NG, Bolfarini C (2013) Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds. J Mater Process Technol 213(4):515–521CrossRefGoogle Scholar
  88. 88.
    Li Z, Ji S, Ma Y, Chai P, Yue Y, Gao S (2016) Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy. Int J Adv Manuf Technol 86(5–8):1925–1932CrossRefGoogle Scholar
  89. 89.
    Khandkar M, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174CrossRefGoogle Scholar
  90. 90.
    Chao YJ, Qi X (1998) Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. J Mater Process Manuf Sci 7:215–233CrossRefGoogle Scholar
  91. 91.
    Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125(1):138–145CrossRefGoogle Scholar
  92. 92.
    Zhu X, Chao Y (2004) Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol 146(2):263–272CrossRefGoogle Scholar
  93. 93.
    Hamilton C, Dymek S, Blicharski M (2008) A model of material flow during friction stir welding. Mater Charact 59(9):1206–1214CrossRefGoogle Scholar
  94. 94.
    De Vuyst T, D’Alvise L, Simar A, De Meester B, Pierret S (2005) Finite element modelling of friction stir welding of aluminium alloy plates-inverse analysis using a genetic algorithm. Weld World 49(3–4):47–55CrossRefGoogle Scholar
  95. 95.
    Simar A, Lecomte-Beckers J, Pardoen T, De Meester B (2006) Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding. Sci Technol Weld Join 11(2):170–177CrossRefGoogle Scholar
  96. 96.
    Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615CrossRefGoogle Scholar
  97. 97.
    Zhang H, Zhang Z, Chen J (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403(1):340–348CrossRefGoogle Scholar
  98. 98.
    Kuykendall K, Nelson T, Sorensen C (2013) On the selection of constitutive laws used in modeling friction stir welding. Int J Mach Tools Manuf 74:74–85CrossRefGoogle Scholar
  99. 99.
    Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50(2):143–155CrossRefGoogle Scholar
  100. 100.
    Liechty B, Webb B (2008) Modeling the frictional boundary condition in friction stir welding. Int J Mach Tools Manuf 48(12–13):1474–1485CrossRefGoogle Scholar
  101. 101.
    Trimble D, Monaghan J, O’donnell G (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol 61(1):9–12CrossRefGoogle Scholar
  102. 102.
    Yu M, Li W, Li J, Chao Y (2012) Modelling of entire friction stir welding process by explicit finite element method. Mater Sci Technol 28(7):812–817CrossRefGoogle Scholar
  103. 103.
    Mandal S, Rice J, Elmustafa AA (2008) Experimental and numerical investigation of the plunge stage in friction stir welding. J Mater Process Technol 203(1–3):411–419CrossRefGoogle Scholar
  104. 104.
    Schmidt H, Hattel J (2004) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 13(1):77CrossRefGoogle Scholar
  105. 105.
    Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of friction stir welding. Model Simul Mater Sci Eng 17(7):075001CrossRefGoogle Scholar
  106. 106.
    Jedrasiak P, Shercliff HR, Reilly A, McShane GJ, Chen Y, Wang L, Robson J, Prangnell P (2016) Thermal modeling of Al-Al and Al-Steel friction stir spot welding. J Mater Eng Perform 25(9):4089–4098CrossRefGoogle Scholar
  107. 107.
    Heidarzadeh A, Jabbari M, Esmaily M (2015) Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol 77(9–12):1819–1829CrossRefGoogle Scholar
  108. 108.
    Buffa G, Hua J, Shivpuri R, Fratini L (2006) A continuum based fem model for friction stir welding—model development. Mater Sci Eng A 419(1–2):389–396CrossRefGoogle Scholar
  109. 109.
    Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42(14):1549–1557CrossRefGoogle Scholar
  110. 110.
    Colegrove PA, Shercliff H (2004) Development of Trivex friction stir welding tool part 2–three-dimensional flow modelling. Sci Technol Weld Join 9(4):352–361CrossRefGoogle Scholar
  111. 111.
    Hossfeld M, Roos E (2013) A new approach to modelling friction stir welding using the CEL method, Advanced Manufacturing Engineering and Technologies NEWTECH 2013 Stockholm, Sweden 27–30 October 2013, p 179Google Scholar
  112. 112.
    Li K, Jarrar F, Sheikh-Ahmad J, Ozturk F (2017) Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process. Procedia Eng 207:574–579CrossRefGoogle Scholar
  113. 113.
    Chu Q, Yang X, Li W, Vairis A, Wang W (2018) Numerical analysis of material flow in the probeless friction stir spot welding based on coupled Eulerian-Lagrangian approach. J Manuf Process 36:181–187CrossRefGoogle Scholar
  114. 114.
    Pan W, Li D, Tartakovsky AM, Ahzi S, Khraisheh M, Khaleel M (2013) A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204CrossRefGoogle Scholar
  115. 115.
    Tartakovsky A, Grant G, Sun X, Khaleel M (2006) Modeling of friction stir welding (FSW) process with smooth particle hydrodynamics (SPH). SAE International, WarrendaleGoogle Scholar
  116. 116.
    Yoshikawa G, Miyasaka F, Hirata Y, Katayama Y, Fuse T (2012) Development of numerical simulation model for FSW employing particle method. Sci Technol Weld Join 17(4):255–263CrossRefGoogle Scholar
  117. 117.
    Padmanaban R, Kishore VR, Balusamy V (2014) Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys. Procedia Eng 97:854–863CrossRefGoogle Scholar
  118. 118.
    Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72(5–8):607–617CrossRefGoogle Scholar
  119. 119.
    Yaduwanshi D, Bag S, Pal S (2016) Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials. Mater Des 92:166–183CrossRefGoogle Scholar
  120. 120.
    Liu X, Lan S, Ni J (2015) Thermal mechanical modeling of the plunge stage during friction-stir welding of dissimilar Al 6061 to TRIP 780 steel. J Manuf Sci Eng 137(5):051017–051017CrossRefGoogle Scholar
  121. 121.
    Liu X, Chen G, Ni J, Feng Z (2017) Computational fluid dynamics modeling on steady-state friction stir welding of aluminum alloy 6061 to TRIP steel. J Manuf Sci Eng 139(5):051004CrossRefGoogle Scholar
  122. 122.
    Chen K, Liu X, Ni J (2017) Thermal-mechanical modeling on friction stir spot welding of dissimilar materials based on coupled Eulerian-Lagrangian approach. Int J Adv Manuf Technol 91(5–8):1697–1707CrossRefGoogle Scholar
  123. 123.
    Li K, Aidun D, Marzocca P (2009) Time-varying functionally graded material thermal modeling of friction stir welding joint of dissimilar metals. ASM International, Russell Township, pp 731–735Google Scholar
  124. 124.
    Torres E. CFD modelling of dissimilar aluminum-steel friction stir welds, Proc. 9th International Conference on Trends in Welding Research, A$MGoogle Scholar
  125. 125.
    Nandan R, Roy G, Lienert T, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895CrossRefGoogle Scholar
  126. 126.
    Arora A, Nandan R, Reynolds A, DebRoy T (2009) Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr Mater 60(1):13–16CrossRefGoogle Scholar
  127. 127.
    Nandan R, Roy G, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans A 37(4):1247–1259CrossRefGoogle Scholar
  128. 128.
    Nandan R, Roy G, Lienert T, DebRoy T (2006) Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Join 11(5):526–537CrossRefGoogle Scholar
  129. 129.
    Chen K, Liu X, Ni J (2017) Keyhole refilled friction stir spot welding of aluminum alloy to advanced high strength steel. J Mater Process Technol 249:452–462CrossRefGoogle Scholar
  130. 130.
    Liu X, Lan S, Ni J (2015) Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol 219:112–123CrossRefGoogle Scholar
  131. 131.
    Troitskii O, Likhtman V (1963) The anisotropy of the action of electron and radiation on the deformation of zinc single crystal in the brittle state. Kokl Akad Nauk 148:332–334Google Scholar
  132. 132.
    Ji S, Li Z, Wang Y, Ma L (2017) Joint formation and mechanical properties of back heating assisted friction stir welded Ti–6Al–4V alloy. Mater Des 113:37–46CrossRefGoogle Scholar
  133. 133.
    Langenecker B (1966) Effects of ultrasound on deformation characteristics of metals. IEEE Transactions on Sonics and Ultrasonics 13(1):1–8CrossRefGoogle Scholar
  134. 134.
    Ji S, Li Z, Ma L, Yue Y, Gao S (2016) Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy. Strength Mater 48(1):2–7CrossRefGoogle Scholar
  135. 135.
    Thomä M, Wagner G, Straß B, Wolter B, Benfer S, Fürbeth W (2018) Ultrasound enhanced friction stir welding of aluminum and steel: process and properties of EN AW 6061/DC04-Joints. J Mater Sci Technol 34(1):163–172CrossRefGoogle Scholar
  136. 136.
    Liu X, Wu C (2015) Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol 225:32–44CrossRefGoogle Scholar
  137. 137.
    Curtis T, Widener C, West M, Jasthi B, Hovanski Y, Carlson B, Szymanski R, Bane W (2015) Friction stir scribe welding of dissimilar aluminum to steel lap joints. In: Friction stir welding and processing VIII. Springer, Berlin, pp 163–169CrossRefGoogle Scholar
  138. 138.
    Jana S, Hovanski Y, Grant G, Mattlin K (2011) Effect of tool feature on the joint strength of dissimilar friction stir lap welds, Friction stir welding and processing VI, pp 205–211Google Scholar
  139. 139.
    Mofid M, Abdollah-Zadeh A, Ghaini FM (2012) The effect of water cooling during dissimilar friction stir welding of Al alloy to mg alloy. Mater Des (1980–2015) 36:161–167CrossRefGoogle Scholar
  140. 140.
    Evans WT, Gibson BT, Reynolds JT, Strauss AM, Cook GE (2015) Friction stir extrusion: a new process for joining dissimilar materials. Manuf Lett 5:25–28CrossRefGoogle Scholar
  141. 141.
    Reza E-Rabby M, Ross K, Whalen S, Hovanski Y, McDonnell M (2017) Solid-state joining of thick-section dissimilar materials using a new friction stir dovetailing (FSD) process, Friction Stir Welding and Processing IX. Springer, Berlin, pp 67–77Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.S.M. Wu Manufacturing Research CenterUniversity of MichiganAnn ArborUSA
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.ColumbusUSA

Personalised recommendations