Advertisement

Research advances in high-energy TIG arc welding

  • Hong Wu
  • Yunlong ChangEmail author
  • Qiang Mei
  • Dan Liu
ORIGINAL ARTICLE
  • 299 Downloads

Abstract

Through collecting, sorting, and analysing the research data of tungsten inert gas (TIG) welding in China and abroad, the modified TIG welding and ways to realise the improvement of the arc energy density are summarised. Based on the existing literature, two methods have been employed to improve the arc energy density. One is controlling and reducing the arc space, i.e., to compress and constrain the arc. The other is to increase the number and energy of the particles in the arc. The primary techniques to achieve the goals mentioned above are the following: adding energy to the arc, changing the arc ionisation, and increasing the arc heat dissipation. Additionally, it is indicated that further studying the mechanism of the arc energy density, especially the shape and energy distribution of the arc at the microscopic level, will provide fresh perspectives in the efficient production of TIG welding.

Keywords

Arc energy density Tungsten inert gas arc welding Improve the methods 

Notes

Funding information

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51275314 and 51575362) and the Research Fund for the Key Lab Program of Shenyang City, Liaoning Province, China (F14-184-1-00).

References

  1. 1.
    Vidyarthy RS, Dwivedi DK (2016) Activating flux tungsten inert gas welding for enhanced weld penetration. J Manuf Process 22:211–228.  https://doi.org/10.1016/j.jmapro.2016.03.012 CrossRefGoogle Scholar
  2. 2.
    Venkatesan G, Muthupandi V, Justine J (2017) Activated TIG welding of AISI 304L using mono- and tri-component fluxes. Int J Adv Manuf Technol 93:329–336.  https://doi.org/10.1007/s00170-016-9002-9 CrossRefGoogle Scholar
  3. 3.
    Dey HC, Albert SK, Bhaduri AK, Mudali UK (2013) Activated flux TIG welding of titanium. Weld World 57:903–912.  https://doi.org/10.1007/s40194-013-0084-9 CrossRefGoogle Scholar
  4. 4.
    Qin B, Yin FC, Xie FX, Shen J, Xie JC, Wu D (2019) Effects and distribution of TiC on the nanoparticle strengthening A-TIG welded AZ31 magnesium alloy joints. Materials Research Express 6(2):1–12Google Scholar
  5. 5.
    Gao XG, Dong JH, Han X (2017) Effect of RE2O3 (RE = La, Ce) fluxes on A-TIG welding of Ti6Al4V. Int J Adv Manuf Technol 91(1–4):1181–1188.  https://doi.org/10.1007/s00170-016-9826-3 CrossRefGoogle Scholar
  6. 6.
    Lin HL, Wu TM, Cheng CM (2014) Effects of flux precoating and process parameter on welding performance of Inconel 718 alloy TIG welds. J Mater Eng Perform 23(1):125–132.  https://doi.org/10.1007/s11665-013-0756-z CrossRefGoogle Scholar
  7. 7.
    Surya DY, Vasantharaja P, Riedlsperger F, Nagaraju S, Vasudevan M (2019) Zone-wise investigation of creep behaviour 9Cr-1Mo steel weld joints. Mater Sci Technol 35(2):155–172.  https://doi.org/10.1080/02670836.2018.1545283 CrossRefGoogle Scholar
  8. 8.
    Kumar SM, Shanmugam NS (2018) Studies on the weldability, mechanical properties and microstructural characterization of activated flux TIG welding of AISI 321 austenitic stainless steel. Mater Rese Exp, 5(10) DOI:  https://doi.org/10.1088/2053-1591/aad99f
  9. 9.
    Pandey C, Mahapatra MM, Kumar P, Saini N, Thakre JG, Vidyarthy RS, Narang HK (2018) A brief study on delta-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch Civil Mech Eng 18(3):713–722.  https://doi.org/10.1016/j.acme.2017.12.002 CrossRefGoogle Scholar
  10. 10.
    Xie FX, Shen J, Song HY, Xie X (2018) Effects of cerium and SiC mixed particles on nanoparticle strengthening activated TIG-welded AZ31 alloy joints. J Mater Res 33(24):4340–4348.  https://doi.org/10.1557/jmr.2018.404 CrossRefGoogle Scholar
  11. 11.
    Fuzeau J, Vasudevan M, Maduraimuthu V (2016) Optimization of welding process parameters for reduced activation ferritic-martensitic (RAFM) steel. Trans Indian Inst Metals 69(8):1493–1499.  https://doi.org/10.1007/s12666-015-0717-3 CrossRefGoogle Scholar
  12. 12.
    Joseph J, Muthukumaran S (2017) Optimization of activated TIG welding parameters for improving weld joint strength of AISI 4135 PM steel by genetic algorithm and simulated annealing. Int J Adv Manuf Technol 93(1–4):23–34.  https://doi.org/10.1007/s00170-015-7599-8 CrossRefGoogle Scholar
  13. 13.
    Vidyarthy RS, Dwivedi DK (2018) Microstructure evolution and Charpy toughness relationship of A-TIG weld fusion zone for varying tempering time. Trans Indian Inst Metals 71(5):1287–1300.  https://doi.org/10.1007/s12666-017-1266-8 CrossRefGoogle Scholar
  14. 14.
    Shyu SW, Huang HY, Tseng KH, Chou CP (2008) Study of the performance of stainless steel A-TIG welds. J Mater Eng Perform 17(2):193–201.  https://doi.org/10.1007/s11665-007-9139-7 CrossRefGoogle Scholar
  15. 15.
    Vasudevan M (2017) Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels. J Mater Eng Perform 26(3):1325–1336.  https://doi.org/10.1007/s11665-017-2517-x CrossRefGoogle Scholar
  16. 16.
    Zhang RH, Pan JL, Katayama S (2011) The mechanism of penetration increase in A-TIG welding. Front Mater Sci 5(2):109–118.  https://doi.org/10.1007/s11706-011-0125-5 CrossRefGoogle Scholar
  17. 17.
    Kobayashi K, Nishimura Y, Iijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M (2004) Practical application of high efficiency twin-arc TIG welding method (Sedar-TIG) for Pclng storage tank. Weld World 48(7–8):35–39.  https://doi.org/10.1007/BF03266441 CrossRefGoogle Scholar
  18. 18.
    Ding XP, Li H, Yang LJ, Gao Y, Wei HL (2014) Numerical analysis of arc characteristics in two-electrode GTAW. Int J Adv Manuf Technol 70(9–12):1867–1874.  https://doi.org/10.1007/s00170-013-5443-6 CrossRefGoogle Scholar
  19. 19.
    Schwedersky MB, Henrique Gonçalves R, Dutra JC, Reisgen U, Willms K (2018) Arc characteristic evaluation of the double-electrode GTAW process using high current values. Int J Adv Manuf Technol 98(1–4):929–936.  https://doi.org/10.1007/s00170-018-2344-8 CrossRefGoogle Scholar
  20. 20.
    Leng XS, Zhang GJ, Wu L (2006) The characteristic of twin-electrode TIG coupling arc pressure. J Phys D Appl Phys 39(6):1120–1126.  https://doi.org/10.1088/0022-3727/39/6/017 CrossRefGoogle Scholar
  21. 21.
    Zhang GJ, Xiong J, Gao HM, Wu L (2012) Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. J Quant Spectrosc Radiat Transf 113(15):1938–1945.  https://doi.org/10.1016/j.jqsrt.2012.05.018 CrossRefGoogle Scholar
  22. 22.
    Huang Y, Liu RL, Hao YZ (2018) Gas pool coupled activating TIG welding method with coupling arc electrode. Chin J Mech Eng 31:96.  https://doi.org/10.1186/s10033-018-0297-3 CrossRefGoogle Scholar
  23. 23.
    Yonglun S (2013) Research and development of high performance welding arc. Electric Weld Mach 43(3):1–5Google Scholar
  24. 24.
    Xie Y, Cai YC, Zhang X, Luo Z (2018) Characterization of keyhole gas tungsten arc welded AISI 430 steel and joint performance optimization. Int J Adv Manuf Technol 99:347–361.  https://doi.org/10.1007/s00170-018-2257-6 CrossRefGoogle Scholar
  25. 25.
    Schnick M, Fuentes J E, Zschetzsche J, et al. (2010) Cathode focussed TIG fundamentals and applications. 63rd International Conference of the International Institute of Welding, Istanbul. Document number XII-1985-10Google Scholar
  26. 26.
    Lohse M, Füssel U, Schuster H, Friedel J, Schnick M (2013) Keyhole welding with CF-TIG (cathode focussed GTA). Welding in the World 57(5):735–741.  https://doi.org/10.1007/s40194-013-0074-y CrossRefGoogle Scholar
  27. 27.
    Rosellini C, Jarvis L (2009) The keyhole TIG welding process: avalid alternative for valuable metal joints. Weld Int 23(8):616–621.  https://doi.org/10.1080/09507110802543237 CrossRefGoogle Scholar
  28. 28.
    Cui SW, Shi YH, Cui YX, Zhu T (2018) The impact toughness of novel keyhole TIG welded duplex stainless steel joints. Eng Fail Anal 94:226–231.  https://doi.org/10.1016/j.engfailanal.2018.08.009 CrossRefGoogle Scholar
  29. 29.
    Huang YF, Luo Z, Lei YC, Ao SS, He S, Zhang Y (2018) Dissimilar joining of AISI 304/Q345 steels in keyhole tungsten inert gas welding process. Int J Adv Manuf Technol 96:4041–4049.  https://doi.org/10.1007/s00170-018-1791-6 CrossRefGoogle Scholar
  30. 30.
    Fei ZY, Pan ZX, Cuiuri D, Li HJ, Wu BT, Ding DH, Su LH, Gazder AA (2018) Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel. J Manuf Process 32:482–493.  https://doi.org/10.1016/j.jmapro.2018.03.014 CrossRefGoogle Scholar
  31. 31.
    Liu ZM, Fang YX, Qiu JY, Feng MN, Luo Z, Yan JR (2017) Stabilization of weld pool through jet flow argon gas backing in C-Mn steel keyhole TIG welding. J Mater Process Technol 250(12):132–143.  https://doi.org/10.1016/j.jmatprotec.2017.07.008 CrossRefGoogle Scholar
  32. 32.
    Liu ZM, Fang YX, Cui SL, Yi S, Qiu JY, Jiang Q, Liu WD, Luo Z (2017) Keyhole thermal behavior in GTAW welding process. Int J Therm Sci 114(4):352–362.  https://doi.org/10.1016/j.ijthermalsci.2017.01.005 CrossRefGoogle Scholar
  33. 33.
    Fei ZY, Pan ZX, Cuiuri D, Li HJ, Wu BT, Su LH (2019) Improving the weld microstructure and material properties of K-TIG welded armour steel joint using filler material. Int J Adv Manuf Technol 100:1931–1944.  https://doi.org/10.1007/s00170-018-2787-y CrossRefGoogle Scholar
  34. 34.
    Liu ZM, Chen SY, Yuan X, Zuo AQ, Zhang T, Luo Z (2018) Magnetic-enhanced keyhole TIG welding process. Int J Adv Manuf Technol 99:275–285.  https://doi.org/10.1007/s00170-018-2501-0 CrossRefGoogle Scholar
  35. 35.
    Zhang BR, Shi YH, Gu SY (2019) Narrow-seam identification and deviation detection in keyhole deep-penetration TIG welding. Int J Adv Manuf Technol 101(5–8):2051–2064.  https://doi.org/10.1007/s00170-018-3089-0 CrossRefGoogle Scholar
  36. 36.
    Wang YP, Qi BJ, Cong BQ, Zhu MJ, Lin SB (2018) Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding. J Manuf Process 34:179–186.  https://doi.org/10.1016/j.jmapro.2018.06.006 CrossRefGoogle Scholar
  37. 37.
    Fang YX, Liu ZM, Cui SL, Zhang Y, Qiu JY, Luo Z (2017) Improving Q345 weld microstructure and mechanical properties with high frequency current arc in keyhole mode TIG welding. J Mater Process Technol 250:280–288.  https://doi.org/10.1016/j.jmatprotec.2017.07.026 CrossRefGoogle Scholar
  38. 38.
    Qi BJ, Yang MX, Cong BQ, Liu FJ (2013) The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel. Int J Adv Manuf Technol 66:1545–1553.  https://doi.org/10.1007/s00170-012-4438-z CrossRefGoogle Scholar
  39. 39.
    Zhao JR, Sun D, Hu SS (1992) Anode behavior of high frequency pulse TIG welding arc. Trans China Weld Institution 13(1):59–66Google Scholar
  40. 40.
    Morisada Y, Fujii H, Inagaki F, Kamai M (2013) Development of high frequency tungsten inert gas welding method. Mater Des 44:12–16.  https://doi.org/10.1016/j.matdes.2012.07.054 CrossRefGoogle Scholar
  41. 41.
    Balle F (2012) Ultrasonic welding. JOM 64(3):400–400.  https://doi.org/10.1007/s11837-012-0261-0 CrossRefGoogle Scholar
  42. 42.
    Yan JC, Yang CL, Liu HJ, Cui W, Xie WF, Guo WB (2015) Overview on ultrasonic-assisted welding and its scientific issues. J Mech Eng 51(24):41–49.  https://doi.org/10.3901/JME.2015.24.041 CrossRefGoogle Scholar
  43. 43.
    Yuan HR, Lin SB, Yang CL, Fan CL, Wang S (2011) Microstructure and porosity analysis in ultrasonic assisted TIG welding of 2014 aluminum alloy. China Weld 20(1):39–43Google Scholar
  44. 44.
    He LB, Li LM, Hao HW (2006) Grain refinement and high performance of titanium alloy joint using arc-ultrasonic gas tungsten arc welding. Sci Technol Weld Join 11:72–74.  https://doi.org/10.1179/174329306X77083 CrossRefGoogle Scholar
  45. 45.
    Chen XZ, Shen Z, Wang JJ, Chen J, Lei YC, Huang QY (2012) Effects of an ultrasonically excited TIG arc on CLAM steel weld joints. Int J Adv Manuf Technol 60(5–8):537–544.  https://doi.org/10.1007/s00170-011-3611-0 CrossRefGoogle Scholar
  46. 46.
    Suita Y, Tsukuda Y, Terajima N, Takahashi H, Ogasawara M, Ohji T, Masubuchi K (1997) Welding aluminum ally by hollow electrode TIG in a vacuum. Weld Int 11(8):605–614.  https://doi.org/10.1080/09507119709448442 CrossRefGoogle Scholar
  47. 47.
    Chen SJ, Wang JX, Jiang F, Yan ZY, Gong JL (2016) Research of hollow tungsten central negative pressure arc welding characteristic. J Mech Eng 52(2):7–12.  https://doi.org/10.3901/JME.2016.02.007 CrossRefGoogle Scholar
  48. 48.
    Jiang F, Yan ZY, Chen SJ, Lu ZY (2016) The energy distribution of electrode in hollow cathode centered negative pressure arc. J Manuf Process 24(1):138–144.  https://doi.org/10.1016/j.jmapro.2016.08.005 CrossRefGoogle Scholar
  49. 49.
    Jiang F, Chen SJ, Zhang RY, Yan ZY, Wang JX, Zhang YM (2016) Hollow cathode centered negative pressure arc. Weld J 95(10):395–408Google Scholar
  50. 50.
    Chen SJ, Yan ZY, Jiang F, Lu ZY (2016) The pressure distribution of hollow cathode centered negative pressure arc. J Manuf Process 23:21–28.  https://doi.org/10.1016/j.jmapro.2016.05.016 CrossRefGoogle Scholar
  51. 51.
    Tashiro S, Tanaka M, Nakatani M, Tani K, Furubayashi M (2007) Numerical analysis of energy source properties of hollow cathode arc. Surf Coat Technol 201(9–11):5431–5434.  https://doi.org/10.1016/j.surfcoat.2006.07.158 CrossRefGoogle Scholar
  52. 52.
    Xu JP, Tian XB, Qi HQ, Wang JJ, Gong CZ, Xu P (2019) Characterization of hollow cathode vacuum arc with axial magnetic field as a concentrated heat source. Vacuum 160:70–74.  https://doi.org/10.1016/j.vacuum.2018.11.012 CrossRefGoogle Scholar
  53. 53.
    Wu H, Chang YL, Lu L, Bai J (2017) Review on magnetically controlled arc welding process. Int J Adv Manuf Technol 91(9–12):4263–4273.  https://doi.org/10.1007/s00170-017-0068-9 CrossRefGoogle Scholar
  54. 54.
    Nomura K, Morisaki K, Hirata Y (2009) Magnetic control of arc plasma and its modeling. Welding in the World 53(7/8):181–187.  https://doi.org/10.1007/BF03266730 CrossRefGoogle Scholar
  55. 55.
    Baskoro AS, Fauzian A, Basalamah H, Kiswanto G, Winarto W (2018) Improving weld penetration by employing of magnetic poles’ configurations to an autogenous tungsten inert gas (TIG) welding. Int J Adv Manuf Technol 99(5–8):1603–1613.  https://doi.org/10.1007/s00170-018-2552-2 CrossRefGoogle Scholar
  56. 56.
    Wang JF, Sun QJ, Feng JC, Wang SL, Zhao HY (2017) Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation. Int J Adv Manuf Technol 90(1–4):413–420.  https://doi.org/10.1007/s00170-016-9407-5 CrossRefGoogle Scholar
  57. 57.
    Wang JF, Sun QJ, Feng JC, Zhang T, Zhang S, Liu YB (2018) Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW. J Mater Process Technol 254:254–264.  https://doi.org/10.1016/j.jmatprotec.2017.11.042 CrossRefGoogle Scholar
  58. 58.
    Wang L Wu CS, Gao JQ (2016) Suppression of humping bead in high speed GMAW with external magnetic field. Sci Technol Weld Join 21(2):131–139.  https://doi.org/10.1179/1362171815Y.0000000074 CrossRefGoogle Scholar
  59. 59.
    Chen SJ, Hua AB, Yin SY (2006) Arc movement characteristics of TIG welding in a rotating magnetic field. Welding & Joining 10:34–36.  https://doi.org/10.3969/j.issn.1001-1382.2006.10.007 CrossRefGoogle Scholar
  60. 60.
    Liu ZJ, Li YH, Su YH (2018) Simulation and analysis of heat transfer and fluid flow characteristics of arc plasma in longitudinal magnetic field-tungsten inert gas hybrid welding. Int J Adv Manuf Technol 98(5–8):2015–2030.  https://doi.org/10.1007/s00170-018-2320-3 CrossRefGoogle Scholar
  61. 61.
    Yin XQ, Gou JJ, Zhang JX, Sun JT (2012) Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields. J Phys D Appl Phys 45(28):285203.  https://doi.org/10.1088/0022-3727/45/28/285203 CrossRefGoogle Scholar
  62. 62.
    Luo J, Yao ZX, Xue KL (2016) Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding. Int J Adv Manuf Technol 84(1–4):1–15.  https://doi.org/10.1007/s00170-015-7728-4 CrossRefGoogle Scholar
  63. 63.
    Lu L (2014) Behavior research on high frequency double-pulse TIG welding arc. Shenyang University of Technology, ShenyangGoogle Scholar
  64. 64.
    Zhu L, Zhang RJ, Tian YJ (2007) TIG arc constricted by rotating ceramic plates. Trans China Weld Institution 28(11):1–4.  https://doi.org/10.1016/S1001-6058(07)60030-4 CrossRefGoogle Scholar
  65. 65.
    Cai XY, Lin SB, Murphy AB, Dong BL, Fan CL, Yang CL (2018) Influence of helium content on a ternary-gas-shielded GMAW process. Welding in the World 62(5):973–984.  https://doi.org/10.1007/s40194-018-0631-5 CrossRefGoogle Scholar
  66. 66.
    Kah P, Martikainen J (2013) Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64(9–12):1411–1421.  https://doi.org/10.1007/s00170-012-4111-6 CrossRefGoogle Scholar
  67. 67.
    Liu W, Wang HP, Lu FG, Cui HC (2015) Investigation on effects of process parameters on porosity in dissimilar Al alloy lap fillet welds. Int J Adv Manuf Technol 81(5–8):843–849.  https://doi.org/10.1007/s00170-015-7276-y CrossRefGoogle Scholar
  68. 68.
    Ikegami Y, Miyauchi H, Yamamoto S, Uchihara M (2012) Shielding gases for improved GMAW and GTAW processes. Weld Int 26(3):187–195.  https://doi.org/10.1080/09507116.2011.590664 CrossRefGoogle Scholar
  69. 69.
    Mirzaei M, Khodabandeh A, Najafi H (2016) Effect of active gas on weld shape and microstructure of highly efficient TIG welded A516 low carbon steel. Trans Indian Inst Metals 69(9):1723–1731.  https://doi.org/10.1007/s12666-016-0832-9 CrossRefGoogle Scholar
  70. 70.
    Zheng Y, Wang YC, Li H, Xing WQ, Yu XY, Dong P, Wang WX, Fan GW, Lian J, Ding M (2016) An experimental study of nitrogen gas influence on the 443 ferritic stainless steel joints by double-shielded welding. Int J Adv Manuf Technol 87(9–12):3315–3323.  https://doi.org/10.1007/s00170-016-8693-2 CrossRefGoogle Scholar
  71. 71.
    Zhou CF, Jiao XD, Xue L, Chen JQ, Fang XM (2010) Study on sub-sea pipelines hyperbaric welding repair under high air pressures. Robotic Welding, Intelligence and Automation,:391–397. DOI:  https://doi.org/10.1007/978-3-642-19959-2_48
  72. 72.
    Li K, Gao HM, Li HC, Gong S (2014) Droplet rebounded spatter in dry hyperbaric gas metal arc welding process. Int J Adv Manuf Technol 74(5–8):693–698.  https://doi.org/10.1007/s00170-014-5990-5 CrossRefGoogle Scholar
  73. 73.
    Allum CJ (1982) Characteristics and structure of high pressure(1- 42bars) gas tungsten arcs. Cranfield Institute of Technology, Cranfield, Bedfordshire, EnglandGoogle Scholar
  74. 74.
    Zhang LJ, Gao XL, Sun MJ, Zhang JX (2014) Weld outline comparison between various pulsed Nd:YAG laser welding and pulsed Nd:YAG laser-TIG arc welding. Int J Adv Manuf Technol 75:153–160.  https://doi.org/10.1007/s00170-014-6122-y CrossRefGoogle Scholar
  75. 75.
    Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C (2017) An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy. Opt Lasers Eng 96:1–6.  https://doi.org/10.1016/j.optlaseng.2017.04.004 CrossRefGoogle Scholar
  76. 76.
    Reisgen U, Krivtsun I, Gerhards B, Alexander Z (2016) Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb:YAG-laser beam. J Laser Appli 28(2):022402.  https://doi.org/10.2351/1.4944096 CrossRefGoogle Scholar
  77. 77.
    Ning J, Zhang LJ, Na SJ, Yin XQ, Niu J, Zhang JX, Wang HR (2017) Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd: YAG laser/TIG hybrid welding. Int J Adv Manuf Technol 91(1–4):1129–1143.  https://doi.org/10.1007/s00170-016-9812-9 CrossRefGoogle Scholar
  78. 78.
    Song G, Wang HY, Li TT, Liu LM (2018) Joining mechanism of Mg alloy/steel butt joints with Cu-Zn interlayer by hybrid laser-TIG welding source. J Iron Steel Res Int 25:221–227.  https://doi.org/10.1007/s42243-018-0024-4 CrossRefGoogle Scholar
  79. 79.
    Thomy C, Möller F, Sepold G, Vollertsen F (2009) Interaction between laser beam and arc in hybrid welding processes for dissimilar materials. Welding in the World 53(1–2):58–66.  https://doi.org/10.1007/BF03266692 CrossRefGoogle Scholar
  80. 80.
    Liu LM, Shi JP, Xu XK (2018) Analysis-effective induction efficiency of laser in pulse laser-GTA welding of titanium alloy. Int J Adv Manuf Technol 96(1–4):401–410.  https://doi.org/10.1007/s00170-017-1515-3 CrossRefGoogle Scholar
  81. 81.
    Reisgen U, Zabirov A, Krivtsun I, Demchenko V (2015) Interaction of CO2-laser beam with argon plasma of gas tungsten arc. Welding in the World 59(5):611–622.  https://doi.org/10.1007/s40194-015-0236-1 CrossRefGoogle Scholar
  82. 82.
    Kim YC, Hirohata M, Inose K (2014) Verification of possibility for controlling welding distortion generated by laser-arc hybrid welding. Int J Steel Struc 14(2):323–329.  https://doi.org/10.1007/s13296-014-2012-2 CrossRefGoogle Scholar
  83. 83.
    Kanemaru S, Sasaki T, Sato T, Tetsuo E, Manabu T (2015) Study for the mechanism of TIG-MIG hybrid welding process. Weld World 59:261–268.  https://doi.org/10.1007/s40194-014-0205-0 CrossRefGoogle Scholar
  84. 84.
    Chen J, Zong R, Wu CS, Padhy GK, Hu QX (2017) Influence of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding. J Mater Process Technol 243:131–142.  https://doi.org/10.1016/j.jmatprotec.2016.12.012 CrossRefGoogle Scholar
  85. 85.
    Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M (2014) Study for TIG-MIG hybrid welding process. Welding in the World 58(1):11–18.  https://doi.org/10.1007/s40194-013-0090-y CrossRefGoogle Scholar
  86. 86.
    Emmanuel OO, Esther TA, Mutiu FE (2018) Study on microstructure and mechanical properties of 304 stainless steel joints by TIG–MIG hybrid welding. Surf Rev Lett 25(1):1850042.  https://doi.org/10.1142/S0218625X18500427 CrossRefGoogle Scholar
  87. 87.
    Zuo W, Ma L, Lu Y, Li SY, Ji ZQ, Ding M (2018) Effects of solution treatment temperatures on microstructure and mechanical properties of TIG–MIG hybrid arc additive manufactured 5356 aluminum alloy. Met Mater Int 24(6):1346–1358.  https://doi.org/10.1007/s12540-018-0142-3 CrossRefGoogle Scholar
  88. 88.
    Zhou YB, Zhang ZD, Liu LM (2017) Effect of arc distance on back appearance of root welding without backing plate by PMAG-TIG twin-arc welding. Int J Adv Manuf Technol 92:3583–3592.  https://doi.org/10.1007/s00170-017-0393-z CrossRefGoogle Scholar
  89. 89.
    Zhou YB, Fang DS, Liu LM (2017) Root welding of V-groove thick plate without backing plate by MAG-TIG double-arc welding. Int J Precis Eng Manuf 18(4):623–628.  https://doi.org/10.1007/s12541-017-0074-8 CrossRefGoogle Scholar
  90. 90.
    Shen X, Ma GH, Chen P (2018) Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy. Int J Adv Manuf Technol 94:2811–2819.  https://doi.org/10.1007/s00170-017-0954-1 CrossRefGoogle Scholar
  91. 91.
    Yan K, Yang G, Zhao Y, Gao LH, Lu JS (2012) Spectrum analysis of A-TIG welding for aluminum alloy. Trans China Weld Inst 33(12):73–76.  https://doi.org/10.1007/s11783-011-0280-z CrossRefGoogle Scholar
  92. 92.
    Vora JJ, Badheka VJ (2016) Improved penetration with the use of oxide fluxes in activated TIG welding of low activation ferritic/martensitic steel. Trans Indian Inst Metals 69(9):1755–1764.  https://doi.org/10.1007/s12666-016-0835-6 CrossRefGoogle Scholar
  93. 93.
    Li H, Zou JS, Yao JS, Peng HP (2017) Uniform design and optimization of active agent and technology research for A-TIG welding of 2219 aluminum alloy. Int J Adv Manuf Technol 92(9–12):3435–3446.  https://doi.org/10.1007/s00170-017-0356-4 CrossRefGoogle Scholar
  94. 94.
    Li CX, Zhang XF, Wang J (2018) The effect of axial external magnetic field on tungsten inert gas welding of magnesium alloy. Mater Res Exp, 5(4) DOI:  https://doi.org/10.1088/2053-1591/aabb39

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringShenyang University of TechnologyShenyangChina
  2. 2.College of Mechanical and Equipment EngineeringHebei University of EngineeringHandanChina
  3. 3.Liaoning Mechatronics CollegeDandongChina

Personalised recommendations