A study on welding mode transition by electrical detection of laser-induced plasma at varying energy levels

  • Shengbin Zhao
  • Lijun YangEmail author
  • Yiming HuangEmail author
  • Dejin Zhao
  • Sai Xu


The transition between heat conduction and deep penetration laser welding is investigated by the electrical detection of laser-induced plasma with an electrical passive probe. A further improved physical model based on plasma sheath effect is established to clarify the mechanism of plasma electrical signal. Different electrical signals are detected at varying levels of laser input energy and analyzed in the time and frequency domains. The amplitudes and the fluctuation frequency of the collected signals are demonstrated to be effective in reflecting the electron temperature and the plasma oscillation features respectively. These assessments are identical with the experimental results obtained by a high-speed camera. Combined with the signal characteristics and the weld profiles at different laser powers, the critical state and laser power density of mode transition are discussed and identified by an analytic calculation model.


Laser welding Mode transition Electrical detection Plasma 


Funding information

This work is supported by the National Natural Science Foundation of China (Grant No. 51875403).


  1. 1.
    Kannatey-Asibu E (2009) Principles of laser material processing. Wiley, New JerseyCrossRefGoogle Scholar
  2. 2.
    Stavridis J, Papacharalampopoulos A, Stavropoulos P (2014) Quality assessment in laser welding: a critical review. Int J Adv Manuf Technol 94:1825–1847CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Li LJ, Zhang G(2005) Experimental study on plasma inside the keyhole in deep penetration laser welding. Proc. SPIE, Lasers in Material Processing and Manufacturing II 5629Google Scholar
  4. 4.
    Shcheglov PY, Gumenyuk AV, Gornushkin IB, Rethmeier M, Petrovskiy VN (2013) Vapor–plasma plume investigation during high-power fiber laser welding. Laser Phys 23(1):016001CrossRefGoogle Scholar
  5. 5.
    Chen QT, Tang XH, Lu FG, L Y, Cui HC (2015) Study on the effect of laser-induced plasma plume on penetration in fiber laser welding under subatmospheric pressure. Int Adv Manuf Technol 78:331–339CrossRefGoogle Scholar
  6. 6.
    Tenner F, Brock C, Klämpfl F, Schmidt M (2015) Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for modeling of the keyhole geometry. Opt Lasers Eng 64:32–41CrossRefGoogle Scholar
  7. 7.
    Nakamura S, Sakurai M, Kamimuki K, Inoue T, Ito Y (2000) Detection technique for transition between deep penetration mode and shallow penetration mode in CO2 laser welding of metals. J Phys D Appl Phys 33(22):2941–2948CrossRefGoogle Scholar
  8. 8.
    Purtonen T, Kalliosaari A, Salminen A (2014) Monitoring and adaptive control of laser processes. Phys Procedia 56:1218–1231CrossRefGoogle Scholar
  9. 9.
    Mao Y, Kinsman G, Duley WW (1993) Real-time fast Fourier transform analysis of acoustic emission during CO2 laser welding of materials. J Laser Appl 5(2):17–22CrossRefGoogle Scholar
  10. 10.
    Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugarà PM (2007) Optical detection of conduction/keyhole mode transition in laser welding. J Mater Process Technol 191(1–3):364–367CrossRefGoogle Scholar
  11. 11.
    Sanders PG, Leong KH, Keske JS, Kornecki G (1998) Real-time monitoring of laserbeam welding using infrared weld emissions. J Laser Appl 10(5):205–211CrossRefGoogle Scholar
  12. 12.
    Martin B, Loredo A, Pilloz M, Grevey D (2001) Characterisation of CW Nd:YAG laser keyhole dynamics. Opt Laser Technol 33(4):201–207CrossRefGoogle Scholar
  13. 13.
    Zhang YM, Ma Y (2001) Stochastic modelling of plasma reflection during keyhole arc welding. Meas Sci Technol 12:1964–1975CrossRefGoogle Scholar
  14. 14.
    Zhang YM, Zhang SB, Liu YC (2001) A plasma cloud charge sensor for pulse keyhole process control. Meas Sci Technol 12:1365–1370CrossRefGoogle Scholar
  15. 15.
    Bi C, Yang LJ, Xu WH, Wang LP (2012) An electrical detection of the fluctuating plasma of laser welding with a passive probe. J Phys D Appl Phys 45(38):385202CrossRefGoogle Scholar
  16. 16.
    Zhao SB, Yang LJ, Liu T, Yang RX, Pan JJ (2017) Analysis of plasma oscillations by electrical detection in Nd:YAG laser welding. J Mater Process Technol 249:479–489CrossRefGoogle Scholar
  17. 17.
    Huang YM, Xu S, Yang LJ, Zhao SB, Liu Y, Shi YS (2019) Defect detection during laser welding using electrical signals and high-speed photography. J Mater Process Technol 271:394–403CrossRefGoogle Scholar
  18. 18.
    Mrňa L, Sarbort M (2014) Plasma bursts in deep penetration laser welding. Phys Procedia 56:1261–1267CrossRefGoogle Scholar
  19. 19.
    Sabbaghzadeh J, Dadras S, Torkamany MJ (2007) Comparison of pulsed Nd:YAG laser welding qualitative features with plasma plume thermal characteristics. J Phys D Appl Phys 40(4):1047–1051CrossRefGoogle Scholar
  20. 20.
    Dadras S, Torkamany MJ, Sabbaghzadeh J (2008) Spectroscopic characterization of low-nickel copper welding with pulsed Nd:YAG laser. Opt Lasers Eng 46(10):769–776CrossRefGoogle Scholar
  21. 21.
    Mrňa L, Martin S, Rerucha S, Jedlicka P (2016) Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel. J Laser Appl 29(1):0122009Google Scholar
  22. 22.
    Sibillano T, Ancona A, Rizzi D, Saludes RS, Rodríguez NJ, Konuk, AR, Aarts R, Huis in’t Veld AJ (2010) Study on the correlation between plasma electron temperature and penetration depth in laser welding processes. Phys Proc5:429–439Google Scholar
  23. 23.
    Bellan PM (2008) Fundamentals of plasma physics. Cambridge University PressGoogle Scholar
  24. 24.
    Bekefi G (1976) Principles of laser plasmas. Wiley, New YorkGoogle Scholar
  25. 25.
    Finke BR, Kapadia BD, Dowden JM (1990) A fundamental plasma based model for energy transfer in laser material processing. J Phys D Appl Phys 23(6):643–654CrossRefGoogle Scholar
  26. 26.
    Richard D (1993) Plasma physics: an introductory course. Cambridge University PressGoogle Scholar
  27. 27.
    Ambrosy G, Avilov V, Berger P, Huegel H(2007) Laser induced plasma as a source for an intensive current to produce electromagnetic forces in the weld pool. 16th International Symposium on Gas Flow 6346Google Scholar
  28. 28.
    Li L, Brookfield DJ, Steen WM (1996) Plasma charge sensor for in-process, non-contact monitoring of the laser welding process. Meas Sci Technol 7(4):615–626CrossRefGoogle Scholar
  29. 29.
    Hirano K, Fabbro R, Muller M (2011) Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure. J Phys D Appl Phys 44(43):435402CrossRefGoogle Scholar
  30. 30.
    Xiao XF, Song LJ, Xiao WJ, Liu XB (2016) Space-dependent characterization of laser-induced plasma plume during fiber laser welding. J Phys D Appl Phys 49(48):485203CrossRefGoogle Scholar
  31. 31.
    Chen X, Wang HX (2003) Prediction of the laser-induced plasma characteristics in laser welding: a new modelling approach including a simplified keyhole model. J Phys D Appl Phys 36(13):1634–1643CrossRefGoogle Scholar
  32. 32.
    Zhang LJ, Zhang JX, Gumenyuk A, Rethmeier M, Na SJ (2014) Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser. J Mater Process Technol 214(8):1710–1720CrossRefGoogle Scholar
  33. 33.
    Lacroix D, Jeandel G, Boudot C (1997) Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser. J Appl Phys 81(10):6599–6606CrossRefGoogle Scholar
  34. 34.
    National Institute of Standards and Technology Database
  35. 35.
    Kawahito Y, Matsumoto N, Mizutani M, Katayama S (2008) Characterisation of plasma induced during high power fibre laser welding of stainless steel. Sci Technol Weld Join 13(8):744–748CrossRefGoogle Scholar
  36. 36.
    Zou JL, He Y, Wu SK, Huang T, Xiao RS (2015) Experimental and theoretical characterization of deep penetration welding threshold induced by 1μm laser. Appl Surf Sci 357:1522–1527CrossRefGoogle Scholar
  37. 37.
    Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27(10):2023–2030CrossRefGoogle Scholar
  38. 38.
    Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole behaviour for full penetration Nd-Yag CW laser welding. J Phys D Appl Phys 38(12):1881–1887CrossRefGoogle Scholar
  39. 39.
    He X, DebRoy T, Fuerschbach PW (2003) Alloying element vaporization during laser spot welding of stainless steel. J Phys D Appl Phys 36(23):3079–3088CrossRefGoogle Scholar
  40. 40.
    Liu JT, Weckman DC, Kerr HW (1993) The effects of process variables on pulsed Nd:YAG laser spot welds: part I. AISI 409 stainless steel. Metall Trans B 24(6):1065–1076CrossRefGoogle Scholar
  41. 41.
    Pang SY, Shao XY, Li W, Chen X, Gong SL (2016) Dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during deep penetration fiber laser welding. Appl Phys A Mater Sci Process 22(7):122–702Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Advanced Joining TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations