Advertisement

Kinematic parameter identification procedure of an articulated arm coordinate measuring machine based on a metrology platform

  • A. Brau-AvilaEmail author
  • R. Acero
  • J. Santolaria
  • M. Valenzuela-Galvan
  • Octavio Icasio-Hernández
ORIGINAL ARTICLE
  • 11 Downloads

Abstract

A still current challenge of paramount importance for manufacturing metrology is the industry and laboratories’ increasing demand for faster inspection and verification measuring procedures to determine the conformance of products to dimensional or functional requirements. Within this context, a measuring system group that has gained great importance in the field of high precision dimensional verification are the portable coordinate measuring machines (PCMMs) such as articulated arm coordinate measuring machine (AACMM). Nevertheless, an important drawback of these type of instruments are the time-consuming, tedious, and expensive tasks inherent to their verification and kinematic parameter identification procedures. In this work, a kinematic parameter identification procedure of an AACMM by means of an indexed metrology platform is presented. Moreover, the kinematic modeling of the AACMM is developed, and the optimization of the arm kinematic parameters to minimize the measurement error is carried out in terms of eight objective functions. Finally, a comparison between the optimized parameters and the nominal parameters is discussed, showing the advantages of using the indexed metrology platform (IMP) in the optimization procedure.

Keywords

Manufacturing metrology environment Portable coordinate measuring machine Indexed metrology platform Kinematic parameter identification Articulated arm coordinate measuring machine 

Notes

Funding information

This work is supported by Consejo Nacional de Ciencia y Tecnología (Concayt) of México. This work was supported by the DICON Innpacto Project (IPT-2011-1191-020000), Development of New Advanced Dimensional Control Systems in Manufacturing Processes of High-Impact Sectors, by the Ministerio de Economía y Competitividad of the Spain Government.

References

  1. 1.
    American Society of Mechanical Engineers, 2004 ASME B89.4.22-2004, methods for performance evaluation of articulated arm coordinate measuring machines. New York, NY, USA, pp. 1–45Google Scholar
  2. 2.
    Verein Deutscher Ingenieure, 2009VDI/VDE 2617 part 9, acceptance and reverification test for articulated arm coordinate measuring machines. pp. 1–20,Google Scholar
  3. 3.
    International Organization for Standardization (2016) ISO 10360-12:2016 geometrical product specifications (GPS) -- acceptance and reverification tests for coordinate measuring systems (CMS) -- part 12: articulated arm coordinate measurement machines (CMM). In: Geneva (Switzerland)Google Scholar
  4. 4.
    Brau-Avila A, Santolaria J, Acero R, Valenzuela-Galvan M, Herrera-Jimenez VM, Aguilar JJ (2017) Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform. Meas Sci Technol 28(3):035008CrossRefGoogle Scholar
  5. 5.
    Acero R, Brau A, Santolaria J, Pueo M (2017) Evaluation of a metrology platform for an articulated arm coordinate measuring machine verification under the ASME B89.4.22-2004 and VDI 2617_9-2009 standards. J Manuf Syst 42:57–68CrossRefGoogle Scholar
  6. 6.
    Marxer M, Rocha L, Anwer N, Savio E (2018) New development and distribution concepts for education in coordinate metrology. Procedia CIRP 75:320–324CrossRefGoogle Scholar
  7. 7.
    Bauza MB, Tenboer J, Li M, Lisovich A, Zhou J, Pratt D, Edwards J, Zhang H, Turch C, Knebel R (2018) Realization of industry 4.0 with high speed CT in high volume production. CIRP J Manuf Sci Technol 22:121–125CrossRefGoogle Scholar
  8. 8.
    Santolaria J, Brau A, Velázquez J, Aguilar JJ (May 2010) A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines. Meas Sci Technol 21(5):055101CrossRefGoogle Scholar
  9. 9.
    Piratelli-Filho A, Lesnau GR (Feb. 2010) Virtual spheres gauge for coordinate measuring arms performance test. Measurement 43(2):236–244CrossRefGoogle Scholar
  10. 10.
    Piratelli-Filho A, Fernandes FHT, Arencibia RV (2012) Application of virtual spheres plate for AACMMs evaluation. Precis Eng 36:349–355CrossRefGoogle Scholar
  11. 11.
    Zhao H, Yu L, Xia H, Li W, Jiang Y, Jia H (2018) 3D artifact for calibrating kinematic parameters of articulated arm coordinate measuring machines. Meas Sci Technol 29(6):065009CrossRefGoogle Scholar
  12. 12.
    González-Madruga D, Cuesta E, Patiño H, Barreiro J, Martinez-Pellitero S (2013) Evaluation of AACMM using the virtual circles method. Procedia Eng 63:243–251CrossRefGoogle Scholar
  13. 13.
    Cuesta E, González-Madruga D, Alvarez BJ, Barreiro J (Jun. 2014) A new concept of feature-based gauge for coordinate measuring arm evaluation. Meas Sci Technol 25(6):065004CrossRefGoogle Scholar
  14. 14.
    Cuesta E, Telenti A, Patiño H, González-Madruga D, Martínez-Pellitero S (2015) Sensor prototype to evaluate the contact force in measuring with coordinate measuring arms. Sensors 15(6):13242–13257CrossRefGoogle Scholar
  15. 15.
    Luo Z, Liu H, Li D, Tian K (2018) Analysis and compensation of equivalent diameter error of articulated arm coordinate measuring machine. Meas Control 51(1–2):16–26CrossRefGoogle Scholar
  16. 16.
    El Asmai S, Hennebelle F, Coorevits T, Vincent R, Fontaine J-F (Nov. 2018) Rapid and robust on-site evaluation of articulated arm coordinate measuring machine performance. Meas Sci Technol 29(11):115011CrossRefGoogle Scholar
  17. 17.
    K. Ostrowska, A. Ga, R. Kupiec, K. Gromczak, P. Wojakowski, and J. Sładek,2019 Comparison of accuracy of virtual articulated arm coordinate measuring machine based on different metrological models, vol. 133, pp. 262–270Google Scholar
  18. 18.
    Cheng L, Wang W, Weng Y, Shi G, Yang H, Lu K (2018) A novel kinematic parameters identification method for articulated arm coordinate measuring machines using repeatability and scaling factor. Math Probl Eng 2018:1–10Google Scholar
  19. 19.
    Sultan I a, Puthiyaveettil P (2012) Calibration of an articulated CMM using stochastic approximations. Int J Adv Manuf Technol 63(1–4):201–207CrossRefGoogle Scholar
  20. 20.
    Gao G, Zhang H, San H, Wu X, Wang W (2017) Modeling and error compensation of robotic articulated arm coordinate measuring machines using BP neural network. Complexity 2017:1–8MathSciNetzbMATHGoogle Scholar
  21. 21.
    Gao G, Zhang H, Wu X, Guo Y (2016) Structural parameter identification of articulated arm coordinate measuring machines. Math Probl Eng 2016(1):10Google Scholar
  22. 22.
    Gao G, Zhao J, Na J (2018) Decoupling of kinematic parameter identification for articulated arm coordinate measuring machines. IEEE Access 6:50433–50442CrossRefGoogle Scholar
  23. 23.
    Romdhani F, Hennebelle F, Ge M, Juillion P (2014) Methodology for the assessment of measuring uncertainties of articulated arm coordinate measuring machines. Meas Sci Technol 25(12):15CrossRefGoogle Scholar
  24. 24.
    Dupuis J, Holst C, Kuhlmann H (2017) Improving the kinematic calibration of a coordinate measuring arm using configuration analysis. Precis Eng 50:171–182CrossRefGoogle Scholar
  25. 25.
    Benciolini B, Vitti A (2017) A new quaternion based kinematic model for the operation and the identification of an articulated arm coordinate measuring machine inspired by the geodetic methodology. Mech Mach Theory 112:192–204CrossRefGoogle Scholar
  26. 26.
    Acero R, Santolaria J, Brau A, Pueo M (2016) Virtual distances methodology as verification technique for AACMMs with a capacitive sensor based indexed metrology platform. Sensors 16(11):18CrossRefGoogle Scholar
  27. 27.
    Acero R, Brau A, Santolaria J, Pueo M (2015) Verification of an articulated arm coordinate measuring machine using a laser tracker as reference equipment and an indexed metrology platform. Measurement 69:52–63CrossRefGoogle Scholar
  28. 28.
    Acero R, Santolaria J, Pueo M, Abad J (2016) Uncertainty estimation of an indexed metrology platform for the verification of portable coordinate measuring instruments. Measurement 82:202–220CrossRefGoogle Scholar
  29. 29.
    Judd RP, Knasinski AB (1990) A technique to calibrate industrial robots with experimental verification. IEEE Trans Robot Autom 6(1):20–30CrossRefGoogle Scholar
  30. 30.
    Denavit J, Hartenberg RS (1955) A kinematic notation for lower pair mechanisms based on matrices. J Appl Mech ASME 77:215–221MathSciNetzbMATHGoogle Scholar
  31. 31.
    Avila A, Mazo J, Martín J (Jan. 2014) Design and mechanical evaluation of a capacitive sensor-based indexed platform for verification of portable coordinate measuring instruments. Sensors 14(1):606–633CrossRefGoogle Scholar
  32. 32.
    Sun Y, Hollerbach JM (2008) Observability index selection for robot calibration. Proc IEEE Int Conf Robot Autom:831–836Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SonoraHermosilloMexico
  2. 2.Department of Design and Manufacturing EngineeringUniversidad de ZaragozaZaragozaSpain
  3. 3.Instituto de Investigación en Ingeniería de Aragón (I3A)ZaragozaSpain
  4. 4.Centro Nacional de MetrologíaCENAMel MarquésMexico

Personalised recommendations