μECM process investigation considering pulse signal features and EDL capacitance

  • Mina MortazaviEmail author
  • Atanas Ivanov


Micro-electrochemical machining (μECM) is a controlled anodic dissolution process between electrodes. The anodic dissolution, which follows Faraday’s laws of electrolysis, depends on characteristics of the electrodes materials, electrolyte properties, and pulse signal features. μECM is a challenging multidisciplinary task in which quality of the process and features of the finished products depend on a complex relation between different machining parameters including, electrical features of pulse signal, chemical features of electrolyte, physical features of tools, and thermodynamic features of the process. In this paper, influential machining parameters will be reviewed briefly, and pulse signal features will be investigated and analyzed considering the behavior of the electrode-electrolyte interface. The interface has capacitive feature and plays an important role in micromachining performance. The proposed simulation work presents the requirement for the pulse on-time in order to provide the maximum possible charging-discharging time for the capacitive behavior of the electrode-electrolyte interface.


Electrochemical machining μECM Pulse signal Electric double layer (EDL)  Charging current Faradic current 



  1. 1.
    Lee ES, Baek SY, Cho CR (2007) A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int J Adv Manuf Technol 31(7–8):762–769Google Scholar
  2. 2.
    Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44(15):1577–1589CrossRefGoogle Scholar
  3. 3.
    Kozak J (2004) Thermal models of pulse electrochemical machining. Bull Pol Acad Sci Techn Sci 52(4):313–320Google Scholar
  4. 4.
    Yu CY, Liu CS, Huang YH, Hsu YC, Peklenik J (1982) The investigation of the flow characteristics of the gap in the pulse electrochemical machining (PECM). CIRP Ann Manuf Technol 31(1):119–123CrossRefGoogle Scholar
  5. 5.
    Kozak J, Rajurkar KP, Ross RF (1991) Computer simulation of pulse electrochemical machining (PECM). J Mater Process Technol 28(1–2):149–157CrossRefGoogle Scholar
  6. 6.
    De Silvaa AKM, McGeoughb JA (1998) Process monitoring of electrochemical micromachining. J Mater Process Technol 76(1–3):165–169CrossRefGoogle Scholar
  7. 7.
    Zhang Z, Wang Y, Chen F, Mao W (2011) A micro-machining system based on electrochemical dissolution of material. Russ J Electrochem 47(7):819–824CrossRefGoogle Scholar
  8. 8.
    Datta M, Harris D (1997) Electrochemical micromachining: an environmentally friendly, high speed processing technology. Electrochim Acta 42(20–22):3007–3013CrossRefGoogle Scholar
  9. 9.
    Kamaraj AB, Sundaram MM (2013) Mathematical modeling and verification of pulse electrochemical micromachining of microtools. Int J Adv Manuf 68(5):1055–1061CrossRefGoogle Scholar
  10. 10.
    Marla D, Joshi SS, Mitra SS (2008) Modeling of electrochemical micromachining:comparison to experiments. Micro/Nanolithogr MEMS MOEMS 7(3):033015-1–033015-7Google Scholar
  11. 11.
    Volgin VM, Lyubimov VV, Davydov AD (2016) Modeling and numerical simulation of electrochemical micromachining. Chem Eng Sci 140:252–260CrossRefGoogle Scholar
  12. 12.
    Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tools Manuf 43(13):1301–1310CrossRefGoogle Scholar
  13. 13.
    Chourasia A, Singh SK, Agrawal P (2014) Ultraprecision high rate anodic dissolution processes in ecm. Int J Appl Innov Eng Manag 3(10):347–353Google Scholar
  14. 14.
    Zhang Z, Zhu D (2008) Experimental research on the localized electrochemical micro-machining. Russ J Electrochem 44(8):926–930CrossRefGoogle Scholar
  15. 15.
    Park MS, Chu CN (2007) Micro-electrochemical machining using multiple tool electrodes. J Micromech Microeng 17:1451–1457CrossRefGoogle Scholar
  16. 16.
    Deconinck J, L Hotoiu E (2014) A novel pulse shortcut strategy for simulating nano-second pulse electrochemical micro-machining. J Appl Electrochem 44(11):1225–1238CrossRefGoogle Scholar
  17. 17.
    Kozak J, Gulbinowicz D, Gulbinowicz Z (2009) The mathematical modeling and computer simulation of electrochemical micromachining using ultrashort pulses. S.l. American Institute of PhysicsGoogle Scholar
  18. 18.
    Sueptitz R et al (2013) Electrochemical micromachining of passive electrodes, vol 109. Electrochimica, pp 562–569Google Scholar
  19. 19.
    Saravanan D, Arularasu M, Ganesan K (2012) A study on electrochemical micromachining of super duplex stainless steel for biomedical filters. J Eng Appl Sci 7(5):517–523Google Scholar
  20. 20.
    Kumar MRP, Prakasan K, Kalaichelvan K (2016) Experimental investigation and multiphysics simulation on the influence of micro tools with various end profiles on diametrical overcut of holes machined using electrochemical micromachining for a predetermined optimum combination of process parameters. Russ J Electrochem 52(10):943–954CrossRefGoogle Scholar
  21. 21.
    Ghoshal B, Bhattacharyya B (2013) Influence of vibration on micro-tool fabrication by electrochemical machining. Int J Mach Tools Manuf 64:49–59CrossRefGoogle Scholar
  22. 22.
    Zhu D, Xu HY (2002) Improvement of electrochemical machining accuracy by using dual pole tool. J Mater Process Technol 129(1–3):15–18CrossRefGoogle Scholar
  23. 23.
    Mithu MAH, Fantoni G, Ciampi J, Santochi M (2012) On how tool geometry, applied frequency and machining parameters influence electrochemical microdrilling. CIRP J Manuf Sci Technol 5(3):202–213CrossRefGoogle Scholar
  24. 24.
    Kozak J, Gulbinowicz D, Gulbinowicz Z (2008) The mathematical modeling and computer simulation of pulse electrochemical micromachining. Eng Lett 16(4):556–561Google Scholar
  25. 25.
    Hotoiu EL, van Damme S, Albu C, Deconinck D, Demeter A, Deconinck J (2013) Simulation of nano-second pulsed phenomena in electrochemical micromachining processes – effects of the signal and double layer properties. Electochim Acta 93:8–16CrossRefGoogle Scholar
  26. 26.
    Weber O, Natter H, Bahre D (2015) Pulse electrochemical machining of cast iron: a layer-based approach for modeling the steady-state dissolution current. J Solid State Electrochem 19(5):1265–1276CrossRefGoogle Scholar
  27. 27.
    Wang Q, Tian X, Shan J, Wu G (2009) Design of an ultra-short pulse generator. IEEE, BeijingCrossRefGoogle Scholar
  28. 28.
    Spieser A, Ivanov A (2015) Design of a pulse power supply unit for micro-ECM. Int J Adv Manuf Technol 78(1–4):537–547CrossRefGoogle Scholar
  29. 29.
    Giandomenico N, Meylan O (2016) Development of a new generator for electrochemical micro-machining. Procedia CIRP 8th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII), volume 42, pp 804–808Google Scholar
  30. 30.
    Bard A, Faulkner L (2001) Electrochemical methods. Second ed. s.l. JohnWiley & SonsGoogle Scholar
  31. 31.
    Uddin MS, Das HT, Maiyalagan T (2018) Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte:insights from standard models. Appl Surf Sci 449:445–453CrossRefGoogle Scholar
  32. 32.
    Tu J, Cai W, Shao X (2013) Direct separation of faradaic and double layer charging current in potential step voltammetry. Talenta 116:575–580CrossRefGoogle Scholar
  33. 33.
    Weber O, Rebschlager A, Steuer P, Bahre D (2013) Modeling of the material/electrolyte interface and the electrical current generated during the pulse electrochemical machining of grey cast iron. COMSOL, RotterdamGoogle Scholar
  34. 34.
    Bhattacharyya B (2015) Electrochemical micromachining for nanofabrication, MEMS and nanotechnology. Elsevier, OxfordGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Civil EngineeringBrunel University LondonUxbridgeUK

Personalised recommendations