A volumetric positioning error compensation method for five-axis machine tools

  • Jie LiEmail author
  • Bin Mei
  • Chaolin Shuai
  • Xin-jun Liu
  • Dawei Liu


Volumetric positioning error is an important index that influences the machining accuracy of five-axis machine tools. Although the available compensation methods, including hardware and software compensation, provide approaches to improve the volumetric positioning accuracy of five-axis machine tools, the cost-effect ratio of these methods is usually not acceptable for most users. Based on the volumetric error model of a five-axis machine tool and the sag error compensation function together with the table multiplication function in Siemens 840D system, a novel volumetric positioning error compensation method is proposed in this paper. The experiments show that the proposed compensation method can effectively improve the machining accuracy of the machine tool with really low cost, which shows good perspective in manufacturing industry.


Volumetric positioning error Five-axis machine Error compensation Siemens 840D 


Funding information

This project is financially supported by the National Key Scientific and Technological Project (grant no. 2017ZX04002001).


  1. 1.
    Li S Y, Dai Y F, Yin Z Q (2007) Precision modeling technology for precise and ultra-precise machine tools (in Chinese). The press of National University of defense technologyGoogle Scholar
  2. 2.
    Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34(3):387–398CrossRefGoogle Scholar
  3. 3.
    Ibaraki S, OTA Y (2014) A Machining test to evaluate geometric errors of five-axis machine tools with its application to thermal deformation test. Procedia Cirp 14(6):323–328Google Scholar
  4. 4.
    Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines: an update. CIRP Ann Manuf Technol 57(2):660–675CrossRefGoogle Scholar
  5. 5.
    Florussen GHJ, Spaan HAM (2007) Static R-test: allocating the centreline of rotary axes of machine tools. Proceedings of the Eighth Lamdamap Conference:196–202Google Scholar
  6. 6.
    Florussen GHJ, Spaan HAM, Spaan-Burke TM (2017) Verifying the accuracy of five-axis machine tool focused on kinematic ISO tests using a torus-shaped test work piece. Procedia Manufacturing 14:58–65CrossRefGoogle Scholar
  7. 7.
    Zhang G, Ouyang R, Lu B, Hocken R, Veale R, Donmez A (1988) A displacement method for machine geometry calibration. CIRP Ann Manuf Technol 37(1):515–518CrossRefGoogle Scholar
  8. 8.
    Li J, Xie FG, Liu XJ et al (2016) Geometric error identification and compensation of linear axes based on a novel 13-line method. Int J Adv Manuf Technol 87(5-8):2269–2283CrossRefGoogle Scholar
  9. 9.
    Chen G, Yuan J, Ni J (2001) A displacement measurement approach for machine geometric error assessment. Int J Mach Tool Manu 41(41):149–161CrossRefGoogle Scholar
  10. 10.
    Li J, Xie FG, Liu XJ et al (2017) A geometric error identification method for the swiveling axes of five-axis machine tools by static R-test. Int J Adv Manuf Technol 89(9):3393–3405CrossRefGoogle Scholar
  11. 11.
    Ibaraki S, Oyama C, Otsubo H (2011) Construction of an error map of rotary axes on a five-axis machining center by static R-test. Int J Mach Tool Manu 51(3):190–200CrossRefGoogle Scholar
  12. 12.
    Huang N, Zhang S, Bi Q, Wang Y (2016) Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement. Int J Adv Manuf Technol 84(1-4):505–512CrossRefGoogle Scholar
  13. 13.
    Bi Q, Huang N, Zhang S et al (2015) Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement. Int J Mach Tool Manu 89:182–191CrossRefGoogle Scholar
  14. 14.
    Sze-Wei G, Han-Seok L, Rahman M, Watt F (2007) A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. Int J Mach Tool Manu 47(7-8):1302–1310CrossRefGoogle Scholar
  15. 15.
    Lu XD (2005) Electromagnetically-driven ultra-fast tool servos for diamond turning. Massachusetts Institute of Technology, CambrigeGoogle Scholar
  16. 16.
    Zhu SW, Ding GF, Qin SF et al (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tool Manu 54:24–29CrossRefGoogle Scholar
  17. 17.
    Cui G, Lu Y, Li J, Gao D, Yao Y (2012) Geometric error compensation software system for CNC machine tools based on NC program reconstructing. Int J Adv Manuf Technol 63(1):169–180CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Xiao B, Tian W J, Ren H T, et al. Volumetric error compensation technology of machine tools. Manufacturing technology and machine tools (in Chinese), 2017(4):153-159.Google Scholar
  20. 20.
    Kiridena V, Ferreira PM (1993) Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools. Int J Mach Tool Manu 33(3):417–437CrossRefGoogle Scholar
  21. 21.
    Li J, Xie FG, Liu XJ (2016) Geometric error modeling and sensitivity analysis of a five-axis machine tool. Int J Adv Manuf Technol 82(9-12):2037–2051CrossRefGoogle Scholar
  22. 22.
    Chen JX, Lin SW, Zhou XL (2016) A comprehensive error analysis method for the geometric error of multi-axis machine tool[J]. Int J Mach Tool Manu 106:56–66CrossRefGoogle Scholar
  23. 23.
    ISO/TR 16907: 2015, Machine tools—numerical compensation of geometric error, 2015Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Jie Li
    • 1
    Email author
  • Bin Mei
    • 2
  • Chaolin Shuai
    • 1
  • Xin-jun Liu
    • 2
  • Dawei Liu
    • 1
  1. 1.Chengdu Aircraft Industrial (Group) Co., Ltd.ChengduPeople’s Republic of China
  2. 2.State Key Laboratory of Tribology and Institute of Manufacturing Engineering, Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations