Advertisement

A review on material fracture mechanism in incremental sheet forming

  • Sheng Ai
  • Hui LongEmail author
Open Access
ORIGINAL ARTICLE

Abstract

In incremental sheet forming (ISF), including single point incremental forming (SPIF) and double side incremental forming (DSIF), the material formability can be significantly enhanced when compared with conventional sheet forming processes. The material deformation in ISF is far more complicated because of the combined material deformation under stretching, bending, shearing, and cyclic loading, with an additional effect of compression in DSIF. Despite extensive investigation on material deformation during ISF, no theory has yet been widely agreed to explain different types of the material fracture behavior observed in ISF experiments. This paper presents a comprehensive review on the formability enhancement in ISF and proposes possible fracture mechanisms explaining the different types of fracture behavior observed in the experimental investigations. Discussions are presented to outline the current research progress and possible solutions to overcome the current ISF process limitations because of the material processing failure due to fracture.

Keywords

ISF SPIF DSIF Fracture mechanism 

Notes

Acknowledgements

The first author would like to acknowledge the scholarship received from the Faculty of Engineering, The University of Sheffield, to support this research.

References

  1. 1.
    Edward L (1967) Apparatus and process for incremental dieless forming. Google PatentsGoogle Scholar
  2. 2.
    Iseki H, Kato K, Sakamoto S (1989) Flexible and incremental sheet metal forming using a spherical roller. Proc 40th JJCTP 41:44Google Scholar
  3. 3.
    Meier H, Magnus C, Smukala V (2011) Impact of superimposed pressure on dieless incremental sheet metal forming with two moving tools. CIRP Ann Manuf Technol 60(1):327–330CrossRefGoogle Scholar
  4. 4.
    Emmens W, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210(8):981–997CrossRefGoogle Scholar
  5. 5.
    Duflou JR, Habraken A-M, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J (2017) Single point incremental forming: state-of-the-art and prospects. Int J Mater Form:1–31Google Scholar
  6. 6.
    Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. J Manuf Process 27:37–62CrossRefGoogle Scholar
  7. 7.
    Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao G (2017) A review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol:1–24Google Scholar
  8. 8.
    Silva M, Martins P (2013) Two-point incremental forming with partial die: theory and experimentation. J Mater Eng Perform 22(4):1018–1027CrossRefGoogle Scholar
  9. 9.
    Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49(9–12):941–947CrossRefGoogle Scholar
  10. 10.
    Van Sy L, Thanh Nam N (2013) Hot incremental forming of magnesium and aluminum alloy sheets by using direct heating system. Proc Inst Mech Eng B J Eng Manuf 227(8):1099–1110CrossRefGoogle Scholar
  11. 11.
    Ambrogio G, Filice L, Manco G (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57(1):257–260CrossRefGoogle Scholar
  12. 12.
    Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276CrossRefGoogle Scholar
  13. 13.
    Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2008) Improved SPIF performance through dynamic local heating. Int J Mach Tools Manuf 48(5):543–549CrossRefGoogle Scholar
  14. 14.
    Fang Y, Lu B, Chen J, Xu D, Ou H (2014) Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol 214(8):1503–1515CrossRefGoogle Scholar
  15. 15.
    Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209(3):1158–1174CrossRefGoogle Scholar
  16. 16.
    Smith J, Malhotra R, Liu W, Cao J (2013) Deformation mechanics in single-point and accumulative double-sided incremental forming. Int J Adv Manuf Technol 69(5–8):1185–1201CrossRefGoogle Scholar
  17. 17.
    Maqbool F, Bambach M (2018) Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int J Mech Sci 136:279–292CrossRefGoogle Scholar
  18. 18.
    Esmaeilpour R, Kim H, Park T, Pourboghrat F, Mohammed B (2017) Comparison of 3D yield functions for finite element simulation of single point incremental forming (SPIF) of aluminum 7075. Int J Mech Sci 133:544–554CrossRefGoogle Scholar
  19. 19.
    Esmaeilpour R, Kim H, Park T, Pourboghrat F, Xu Z, Mohammed B, Abu-Farha F (2018) Calibration of Barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. Int J Mech Sci 145:24–41Google Scholar
  20. 20.
    Lu B, Fang Y, Xu D, Chen J, Ou H, Moser N, Cao J (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf 85:14–29CrossRefGoogle Scholar
  21. 21.
    Emmens W, Van den Boogaard A (2009) Incremental forming by continuous bending under tension—an experimental investigation. J Mater Process Technol 209(14):5456–5463CrossRefGoogle Scholar
  22. 22.
    Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87(1–4):479–499CrossRefGoogle Scholar
  23. 23.
    McAnulty T, Jeswiet J, Doolan M (2017) Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP J Manuf Sci Technol 16:43–54CrossRefGoogle Scholar
  24. 24.
    Lu B, Fang Y, Xu D, Chen J, Ai S, Long H, Ou H, Cao J (2015) Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf 93:37–48CrossRefGoogle Scholar
  25. 25.
    Moser N, Zhang Z, Ren H, Ehmann K, Cao J (2016) An investigation into the mechanics of double-sided incremental forming using finite element methods. In: AIP Conference Proceedings, vol 1. AIP Publishing, p 070021Google Scholar
  26. 26.
    Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC pressGoogle Scholar
  27. 27.
    Gupta P, Jeswiet J (2017) Observations on heat generated in single point incremental forming. Procedia Eng 183:161–167CrossRefGoogle Scholar
  28. 28.
    Ai S, Lu B, Chen J, Long H, Ou H (2017) Evaluation of deformation stability and fracture mechanism in incremental sheet forming. Int J Mech Sci 124:174–184CrossRefGoogle Scholar
  29. 29.
    Centeno G, Bagudanch I, Morales-Palma D, García-Romeu M, Gonzalez-Perez-Somarriba B, Martinez-Donaire A, Gonzalez-Perez L, Vallellano C (2017) Recent approaches for the manufacturing of polymeric cranial prostheses by incremental sheet forming. Procedia Eng 183:180–187CrossRefGoogle Scholar
  30. 30.
    Zhang X, Wang J, Zhang S study on process parameters on single point incremental forming of PVC. In: Materials Science Forum, 2017Google Scholar
  31. 31.
    Shim M-S, Park J-J (2001) The formability of aluminum sheet in incremental forming. J Mater Process Technol 113(1):654–658CrossRefGoogle Scholar
  32. 32.
    Martins P, Bay N, Skjødt M, Silva M (2008) Theory of single point incremental forming. CIRP Ann Manuf Technol 57(1):247–252CrossRefGoogle Scholar
  33. 33.
    Filice L, Fratini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann Manuf Technol 51(1):199–202CrossRefGoogle Scholar
  34. 34.
    Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F (2004) Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann Manuf Technol 53(1):207–210CrossRefGoogle Scholar
  35. 35.
    Keeler SP, Backofen WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Asm Trans Q 56(1):25–48Google Scholar
  36. 36.
    Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE Trans:380–387Google Scholar
  37. 37.
    Banabic D (2000) Formability of metallic materials: plastic anisotropy, formability testing, forming limits. Springer Science & Business MediaGoogle Scholar
  38. 38.
    Emmens W, van der Weijde D, van den Boogaard A (2009) The FLC, enhanced formability, and incremental sheet forming. In: Proceedings of the International Deep Drawing Research Group IDDRG 2009 International Conference, pp 1–3Google Scholar
  39. 39.
    Benedyk J, Parikh N, Stawarz D (1971) A method for increasing elongation values for ferrous and nonferrous sheet metals (ferrous and nonferrous sheet metals neck formation prevention for increasing elongation in tensile tests, using continuous plastic bending method). J Mater 6:16–29CrossRefGoogle Scholar
  40. 40.
    Iseki H (2001) An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J Mater Process Technol 111(1):150–154CrossRefGoogle Scholar
  41. 41.
    Haque MZ, Yoon JW (2016) Stress based prediction of formability and failure in incremental sheet forming. Int J Mater Form 9(3):413–421CrossRefGoogle Scholar
  42. 42.
    Silva M, Skjødt M, Bay N, Martins P (2009) Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation. J Strain Anal Eng Des 44(4):221–234CrossRefGoogle Scholar
  43. 43.
    Isik K, Silva M, Tekkaya A, Martins P (2014) Formability limits by fracture in sheet metal forming. J Mater Process Technol 214(8):1557–1565CrossRefGoogle Scholar
  44. 44.
    Suresh K, Regalla SP (2014) Analysis of formability in single point incremental forming using finite element simulations. Procedia Mater Sci 6:430–435CrossRefGoogle Scholar
  45. 45.
    Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf 47(3):419–435CrossRefGoogle Scholar
  46. 46.
    Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(11):1453–1459CrossRefGoogle Scholar
  47. 47.
    Hussain G, Gao L, Hayat N, Ziran X (2009) A new formability indicator in single point incremental forming. J Mater Process Technol 209(9):4237–4242CrossRefGoogle Scholar
  48. 48.
    Emmens W, Van den Boogaard A (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209(8):3688–3695CrossRefGoogle Scholar
  49. 49.
    Eyckens P, Van Bael A, Van Houtte P (2009) Marciniak–Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25(12):2249–2268CrossRefGoogle Scholar
  50. 50.
    Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Duflou JR, Van Bael A, Van Houtte P (2011) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mater Form 4(1):55–71CrossRefGoogle Scholar
  51. 51.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114CrossRefGoogle Scholar
  52. 52.
    Liu R, Lu B, Xu D, Chen J, Chen F, Ou H, Long H (2015) Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy. The International Journal of Advanced Manufacturing Technology:1–8Google Scholar
  53. 53.
    Ji Y, Park J (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol 201(1):354–358CrossRefGoogle Scholar
  54. 54.
    Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40:43–51CrossRefGoogle Scholar
  55. 55.
    Kim Y, Park J (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130:42–46CrossRefGoogle Scholar
  56. 56.
    Hussain G, Gao L, Zhang Z (2008) Formability evaluation of a pure titanium sheet in the cold incremental forming process. Int J Adv Manuf Technol 37(9):920–926CrossRefGoogle Scholar
  57. 57.
    Huang G, Matlock D, Krauss G (1989) Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet. Metall Trans A 20(7):1239–1246CrossRefGoogle Scholar
  58. 58.
    Picu R, Vincze G, Ozturk F, Gracio J, Barlat F, Maniatty A (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A 390(1):334–343CrossRefGoogle Scholar
  59. 59.
    Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32(1):541–560CrossRefGoogle Scholar
  60. 60.
    Xu D, Wu W, Malhotra R, Chen J, Lu B, Cao J (2013) Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int J Mach Tools Manuf 73:37–46CrossRefGoogle Scholar
  61. 61.
    Buffa G, Campanella D, Fratini L (2013) On the improvement of material formability in SPIF operation through tool stirring action. Int J Adv Manuf Technol 66(9–12):1343–1351CrossRefGoogle Scholar
  62. 62.
    Otsu M, Ichikawa T, Matsuda M, Takashima K (2011) Improvement of formability of magnesium alloy sheets by friction stir incremental forming. Steel Research International, Special Edition:537–541Google Scholar
  63. 63.
    Durante M, Formisano A, Langella A, Minutolo FMC (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209(9):4621–4626CrossRefGoogle Scholar
  64. 64.
    Micari F (2004) Single point incremental forming: recent results. In: Seminar on Incremental formingGoogle Scholar
  65. 65.
    Skjødt M, Hancock MH, Bay N (2007) Creating helical tool paths for single point incremental forming. In: Key engineering materials. Trans Tech Publ, pp 583–590Google Scholar
  66. 66.
    Malhotra R, Reddy N, Cao J (2010) Automatic 3D spiral toolpath generation for single point incremental forming. J Manuf Sci Eng 132(6):061003CrossRefGoogle Scholar
  67. 67.
    Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213(7):1221–1233CrossRefGoogle Scholar
  68. 68.
    Huang Y, Cao J, Smith S, Woody B, Ziegert J, Li M (2008) Studies of size effect on the formability of a domed part in incremental forming. In: ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. American Society of Mechanical Engineers, pp 645–654Google Scholar
  69. 69.
    Silva M, Skjødt M, Martins PA, Bay N (2008) Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mach Tools Manuf 48(1):73–83CrossRefGoogle Scholar
  70. 70.
    Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52CrossRefGoogle Scholar
  71. 71.
    Malhotra R, Xue L, Belytschko T, Cao J (2012) Mechanics of fracture in single point incremental forming. J Mater Process Technol 212(7):1573–1590CrossRefGoogle Scholar
  72. 72.
    Mirnia MJ, Shamsari M (2017) Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol 244:17–43CrossRefGoogle Scholar
  73. 73.
    Guzmán CF, Yuan S, Duchêne L, Flores EIS, Habraken AM (2018) Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct 151:45–56CrossRefGoogle Scholar
  74. 74.
    Wu S, Song N, Pires FA (2016) A comparative study of failure with incremental forming. In: Journal of physics: conference series, vol 3. IOP Publishing, p 032065Google Scholar
  75. 75.
    Gatea S, Ou H, Lu B, McCartney G (2017) Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng Fract Mech 186:59–79CrossRefGoogle Scholar
  76. 76.
    Yue ZM, Chu XR, Gao J (2017) Numerical simulation of incremental sheet forming with considering yield surface distortion. Int J Adv Manuf Technol 92(5):1761–1768.  https://doi.org/10.1007/s00170-017-0269-2 CrossRefGoogle Scholar
  77. 77.
    Silva M, Skjødt M, Atkins A, Bay N, Martins P (2008) Single-point incremental forming and formability—failure diagrams. J Strain Anal Eng Des 43(1):15–35CrossRefGoogle Scholar
  78. 78.
    Hussain G, Gao L, Hayat N, Qijian L (2007) The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation. Int J Mach Tools Manuf 47(14):2177–2181CrossRefGoogle Scholar
  79. 79.
    Dwivedi D, Kumar A, Priyadarshi S, Tandon P (2016) Numerical prediction of fracture in parts formed with incremental sheet forming process. Proceeding of AIMTDR:1061–1064Google Scholar
  80. 80.
    El-Sebaie M, Mellor P (1972) Plastic instability conditions in the deep-drawing of a circular blank of sheet metal. Int J Mech Sci 14(9):535–540CrossRefGoogle Scholar
  81. 81.
    Silva MB, Nielsen PS, Bay N, Martins PA (2011) Failure mechanisms in single-point incremental forming of metals. Int J Adv Manuf Technol 56(9–12):893–903CrossRefGoogle Scholar
  82. 82.
    Madeira T, Silva C, Silva M, Martins P (2015) Failure in single point incremental forming. Int J Adv Manuf Technol 80(9–12):1471–1479CrossRefGoogle Scholar
  83. 83.
    Bambach M, Todorova M, Hirt G (2007) Experimental and numerical analysis of forming limits in CNC incremental sheet forming. In: Key engineering materials. Trans Tech Publ, pp 511–518Google Scholar
  84. 84.
    Emmens W, van den Boogaard AH (2010) Contact effects in bending affecting stress and formability. Int J Mater Form 3(1):1159–1162CrossRefGoogle Scholar
  85. 85.
    Centeno G, Bagudanch I, Martínez-Donaire AJ, Garcia-Romeu ML, Vallellano C (2014) Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater Des 63:20–29CrossRefGoogle Scholar
  86. 86.
    Morales D, Martinez A, Vallellano C, Garcia-Lomas F (2009) Bending effect in the failure of stretch-bend metal sheets. Int J Mater Form 2:813–816CrossRefGoogle Scholar
  87. 87.
    Stoughton TB, Yoon JW (2011) A new approach for failure criterion for sheet metals. Int J Plast 27(3):440–459zbMATHCrossRefGoogle Scholar
  88. 88.
    Seong D, Haque M, Kim J, Stoughton T, Yoon J (2014) Suppression of necking in incremental sheet forming. Int J Solids Struct 51(15):2840–2849CrossRefGoogle Scholar
  89. 89.
    Hadoush A, van den Boogaard AH, Emmens W (2011) A numerical investigation of the continuous bending under tension test. J Mater Process Technol 211(12):1948–1956CrossRefGoogle Scholar
  90. 90.
    Barrett T, Kinsey B, Knezevic M, Korkolis Y (2017) Numerical and experimental investigation of formability enhancement during continuous-bending-under-tension (CBT) of AA6022-T4. Procedia Eng 207:1940–1945CrossRefGoogle Scholar
  91. 91.
    Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1):390–395CrossRefGoogle Scholar
  92. 92.
    Malhotra R, Cao J, Ren F, Kiridena V, Xia ZC, Reddy N (2011) Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng 133(6):061019CrossRefGoogle Scholar
  93. 93.
    Wang Y, Huang Y, Cao J, Reddy NV (2008) Experimental study on a new method of double side incremental forming. In: Proceedings of the 2008 International Manufacturing Science and Engineering Conference. MSECGoogle Scholar
  94. 94.
    Malhotra R, Cao J, Beltran M, Xu D, Magargee J, Kiridena V, Xia ZC (2012) Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. CIRP Ann Manuf Technol 61(1):251–254CrossRefGoogle Scholar
  95. 95.
    Meier H, Smukala V, Dewald O, Zhang J (2007) Two point incremental forming with two moving forming tools. In: Key engineering materials. Trans Tech Publ, pp 599–605Google Scholar
  96. 96.
    Xu R, Ren H, Zhang Z, Malhotra R, Cao J (2014) A mixed toolpath strategy for improved geometric accuracy and higher throughput in double-sided incremental forming. In: ASME 2014 international manufacturing science and engineering conference collocated with the JSME 2014 international conference on materials and processing and the 42nd North American manufacturing research conference. American Society of Mechanical Engineers, p V002T002A082-V002T002A082Google Scholar
  97. 97.
    Smith L, Averill R, Lucas J, Stoughton T, Matin P (2003) Influence of transverse normal stress on sheet metal formability. Int J Plast 19(10):1567–1583zbMATHCrossRefGoogle Scholar
  98. 98.
    Valoppi B, Zhang Z, Deng M, Ghiotti A, Bruschi S, Ehmann KF, Cao J (2017) On the fracture characterization in double-sided incremental forming of Ti6Al4V sheets at elevated temperatures. Procedia Manuf 10:407–416CrossRefGoogle Scholar
  99. 99.
    Malcher L, Pires FA, De Sá JC (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30:81–115CrossRefGoogle Scholar
  100. 100.
    Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(1):83–89CrossRefGoogle Scholar
  101. 101.
    Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6):1071–1096zbMATHCrossRefGoogle Scholar
  102. 102.
    Ai S, Lu B, Long H (2017) An analytical study of new material test method for tension under bending and compression in double side incremental forming. Procedia Eng 207:1982–1987CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations