A flexible sheet-bulk forming demonstrator

  • João P. Magrinho
  • Maria B. Silva
  • Paulo A.F. MartinsEmail author


Sheet-bulk forming (SBF) processes based on a combination of deep drawing and upsetting are being increasingly used to produce new sheet metal parts with significant changes in wall thickness to accommodate three-dimensional functional features such as solid bosses, teeth and ribs. The utilisation of sheet-bulk forming processes introduces additional complexity in the design, setup and costs of tooling due to the inherent high forces and complex material flow that easily lead to underfilling and failure in critical die regions. This paper is concerned with these issues and is focused on the development of a sheet-bulk forming demonstrator capable of replicating material flow and failure in sheet thickening, local sheet thickening and sheet injection operating conditions. The demonstrator combines sheet bending and upsetting operations with a flexible design concept based on the utilisation of active modular tool parts to allow different materials, geometries and tool concepts to be tested under laboratory conditions and rapidly transferred to industrial SBF tools.


Sheet-bulk forming Tool demonstrator Bending Upsetting Experimentation Finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This study was financially supported by Fundação para a Ciência e a Tecnologia of Portugal and IDMEC under LAETA-UID/EMS/50022/2019 and PDTC/EMS-TEC/0626/2014.


  1. 1.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Ann Manuf Technol 61:725–745. CrossRefGoogle Scholar
  2. 2.
    Mori K, Nakano T (2016) State-of-the-art of plate forging in Japan. Prod Eng Res Dev 10:81–91. CrossRefGoogle Scholar
  3. 3.
    Maeda A, Araki K (1996) Plate gear, Japanese patent, 9–222,158, (in Japanese)Google Scholar
  4. 4.
    Schneider T, Merklein M (2013) Manufacturing of geared sheet metal components by a single-stage sheet-bulk metal forming process. International Conference on Competitive ManufacturingGoogle Scholar
  5. 5.
    Isik K, Gerstein G, Schneider T, Schulte R, Rosenbusch D, Clausmeyer T, Nürnberger F, Vucetic M, Koch S, Hübner S, Behrens BA, Tekkaya AE, Merklein M (2016) Investigations of ductile damage during the process chains of toothed functional components manufactured by sheet-bulk metal forming. Prod Eng 10:5–15. CrossRefGoogle Scholar
  6. 6.
    Breitsprecher T, Sauer C, Sperber C, Wartzack S (2015) Design-for-manufacture of sheet-bulk metal formed parts. ICED15 - International Conference on Engineering DesignGoogle Scholar
  7. 7.
    Werbs M, Bawohl A, Gerlach L (2011) Kostengünstige herstellung verzahnter bauteile durch blechmassivumformung, Tagungsband zum 1. Erlanger Workshop Blechmassivumformung, Meisenbach, Bamberg, Germany, 159–180, (in German)Google Scholar
  8. 8.
    Merklein M, Plettke R, Schneider S, Opel S, Vipavc D (2012) Manufacturing of sheet metal components with variants using process adapted semi-finished products. Key Eng Mater 504-506:1023–1028. CrossRefGoogle Scholar
  9. 9.
    Gröbel D, Schulte R, Hildenbrand P, Lechner M, Engel U, Sieczkarek P, Wernicke S, Gies S, Tekkaya AE, Behrens BA, Hübner S, Vucetic M, Koch S, Merklein M (2016) Manufacturing of functional elements by sheet-bulk metal forming processes. Prod Eng 10:63–80. CrossRefGoogle Scholar
  10. 10.
    Wang XY, Jin JS, Deng L, Zheng Q (2012) Stamping-forging processing of sheet metal parts. In: Kazeminezhad M (ed) Metal Forming, IntechOpenGoogle Scholar
  11. 11.
    Zhua S, Zhuanga X, Zhua Y, Zhaoa Z (2018) Thickening of cup sidewall through sheet-bulk forming with controllable deformation zone. J Mater Process Technol 262:597–604. CrossRefGoogle Scholar
  12. 12.
    Schneider T, Merklein M (2011) Sheet-bulk metal forming of preformed sheet metal parts. Key Eng Mater 473:83–90. CrossRefGoogle Scholar
  13. 13.
    ASTM E8/E8M. Standard test methods for tension testing of metallic materials (2013) ASTM International. West Conshohocken, USAGoogle Scholar
  14. 14.
    Alves LM, Nielsen CV, Martins PAF (2011) Revisiting the fundamentals and capabilities of the stack compression test. Exp Mech 51:1565–1572. CrossRefGoogle Scholar
  15. 15.
    Barata Marques MJM, Martins PAF (1990) Three-dimensional finite element contact algorithm for metal forming. Int J Numer Methods Eng 30:1341–1354. CrossRefzbMATHGoogle Scholar
  16. 16.
    Mori K, Wang CC, Osakada K (1996) Inclusion of elastic deformation in rigid-plastic finite element analysis. Int J Mech Sci 38:621–631. CrossRefzbMATHGoogle Scholar
  17. 17.
    Nielsen CV, Zhang W, Alves LM, Bay N, Martins PAF (2012) Modeling of thermo-electro-mechanical manufacturing processes with applications in metal forming and resistance welding. Springer, LondonzbMATHGoogle Scholar
  18. 18.
    Esmaeilpour R, Kim H, Park T, Pourboghrat F, Xu Z, Mohammed B, Abu-Farha F (2018) Calibration of Barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. Int J Mech Sci 145:24–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • João P. Magrinho
    • 1
  • Maria B. Silva
    • 1
  • Paulo A.F. Martins
    • 1
    Email author
  1. 1.IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations