Advertisement

Comparative study on drilling effect between conventional drilling and ultrasonic-assisted drilling of Ti-6Al-4V/Al2024-T351 laminated material

  • Lei Wei
  • Dazhong WangEmail author
ORIGINAL ARTICLE
  • 22 Downloads

Abstract

This paper investigates the performance of ultrasonic-assisted drilling (UAD) in machining of Ti-6Al-4V/Al2024-T351 laminated material by using DEFORM-3D finite element method. The effectiveness of two key parameters, frequency and spindle speed, is discussed. The purpose is to explore the effect of UAD on machining performance, to compare it with conventional drilling (CD) and to prove that the UAD technique could achieve better hole quality. To be more specific, the following aspects are taken into account: chip morphology, layer delamination, thrust force, temperature change, and effective stress. The result shows that UAD can produce fragile chips, smaller layer delamination, lower thrust force, larger maximum temperature, and lower effective stress. Both frequency and spindle speed have influence in their own way on machining process.

Keywords

Ultrasonic-assisted drilling Laminated materials Finite element method Conventional drilling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Botelho EC, Silva RA, Pardini LC, Rezende MC (2006) A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res 9(3):247–256CrossRefGoogle Scholar
  2. 2.
    Edward T (2008) Composite materials revolutionize aerospace engineering. Ingenia 36:24–28Google Scholar
  3. 3.
    Phadniis VA, Farrukh M, Anish R, Silberschmidt VV (2012) Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia CIRP 1:455–459Google Scholar
  4. 4.
    Zhu ZJ, Guo K, Sun J, Li JF, Liu Y, Zheng YH, Chen L (2018) Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6AL4V stack. J Mater Process Technol 259:270–281CrossRefGoogle Scholar
  5. 5.
    Mishra R, Malik J, Singh I, Davim JP (2010) Neural network approach for estimating the residual tensile strength after drilling in uni-directional glass fiber reinforced plastic laminates. Mater Des 31(6):2790–2795CrossRefGoogle Scholar
  6. 6.
    Mehbudi P, Baghlani V, Akbari J, Bushroa AR, Mardi NA (2013) Applying ultrasonic vibration to decrease drilling-induced delamination in GFRP laminates. SciVerse ScienceDirect 6:577–582Google Scholar
  7. 7.
    Ni CB, Zhu LD, Liu CF, Yang ZC (2018) Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. Int J Mech Sci 142–143:97–111CrossRefGoogle Scholar
  8. 8.
    Rawat S, Attia H (2009) Wear mechanisms and tool life management of WC-Co drill during dry high speed drilling of woven carbon fibre composites. Wear 267:1022–1030CrossRefGoogle Scholar
  9. 9.
    Abrao AM, Campos RJ, Faria PE, Davim JP (2008) The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforce plastic composite. Mater Des 29(2):508–513CrossRefGoogle Scholar
  10. 10.
    Rawat S, Attia H (2009) Characterization of the dry high speed drilling process of woven composites using machinability maps approach. J Mater Process Technol 58(1):105–108Google Scholar
  11. 11.
    Gaitonde VN, Karnik SR, Rubio JC, Correia AE, Abrao AM, Davim JP (2008) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 203(1–3):431–438CrossRefGoogle Scholar
  12. 12.
    Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrao AM, Davim JP (2008) Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater Des 29(9):1768–1776CrossRefGoogle Scholar
  13. 13.
    Zhang LB, Wang LJ, Wang X (2003) Study on vibration drilling of fiber reinforced plastics with hybrid variation parameters method. Compos A: Appl Sci Manuf 34(3):237–244CrossRefGoogle Scholar
  14. 14.
    Ramkumar J, Aravindan S, Malhotra SK, Krishamurthy R (2004) An enhancement of the machining performance of GFRP by oscillatory assisted drilling. Int J Adv Manuf Technol 23(3–4):240–244Google Scholar
  15. 15.
    Wang X, Wang LJ, Tao JP (2004) Investigation on thrust in vibration drilling of fiber-reinforced plastics. J Mater Process Technol 148(2):239–244CrossRefGoogle Scholar
  16. 16.
    Babitsky VI, Astashev VK, Meadows A (2007) Vibration excitation and energy transfer during ultrasonically assisted drilling. J Sound Vib 308(3–5):805–814CrossRefGoogle Scholar
  17. 17.
    Kong C, Wang DZ (2018) Numerical investigation of the performance of elliptical vibration cutting in machining of AISI 1045 steel. Int J Adv Manuf Technol 98(1–4):715–727CrossRefGoogle Scholar
  18. 18.
    Bhatnagar N, Viswanath P, Singh I (2008) Drilling of unidirectional glass fiber reinforced plastics. Experimental and finite element study. Mater Des 29(2):546–553CrossRefGoogle Scholar
  19. 19.
    Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2013) Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos A: Appl Sci Manuf 47:41–51CrossRefGoogle Scholar
  20. 20.
    Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2012) Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia CIRP 1:455–459CrossRefGoogle Scholar
  21. 21.
    Zhang JH, Zhang QH, Jia ZX, Zhao YG (2014) Combined machining. Chemical industry press, BeijingGoogle Scholar
  22. 22.
    Shan CW, Zhang X, Dang J, Yang Y (2018) Rotary ultrasonic drilling of needle-punched carbon/carbon composites: comparisons with conventional twist drilling and high-speed drilling. Int J Adv Manuf Technol 98(1–4):189–200CrossRefGoogle Scholar
  23. 23.
    Li Z, Zhang DY, Jiang XG, Qin W, Geng DX (2017) Study on rotary ultrasonic-assisted drilling of titanium alloys (Ti6Al4V) using 8-facet drill under no cooling condition. Int J Adv Manuf Technol 90(9–12):3249–3264CrossRefGoogle Scholar
  24. 24.
    Liao YS, Chen YC, Lin HM (2007) Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy. Int J Mach Tools Manuf 47(12–13):1988–1996CrossRefGoogle Scholar
  25. 25.
    Paktinat HP, Amini S (2017) Ultrasonic assistance in drilling: FEM analysins and experimental approaches. Int J Adv Manuf Technol 92(5–8):2653–2665CrossRefGoogle Scholar
  26. 26.
    Pujana J, Rivero A, Celaya A, Lo’pez de Lacalle LN (2009) Analysis of ultrasonic-assisted drilling of Ti6Al4V. Int J Mach Tool Manu 49(6):500–508CrossRefGoogle Scholar
  27. 27.
    Li R, Shih AJ (2007) Spiral point drill temperature and stress in high-throughput drilling of titanium. Int J Mach Tools Manuf 47(12–13):2005–2017CrossRefGoogle Scholar
  28. 28.
    Bono M, Ni J (2002) A model for predicting the heat flow into the workpiece in dry drilling. J Manuf Sci Eng 124(4):773–777CrossRefGoogle Scholar
  29. 29.
    Kalidas S, Kapoor SG, DeVor RE (2002) Influence of thermal effects on hole quality in dry drilling, part 1: a thermal model of workpiece temperatures. J Manuf Sci Eng 124(2):258–266CrossRefGoogle Scholar
  30. 30.
    Ueda T, Nozaki R, Hosokawa A (2007) Temperature measurement of cutting edge in drilling-effect of oil mist. CIRP Ann 56(1):93–96CrossRefGoogle Scholar
  31. 31.
    Huang CH, Jan LC, Li R, Shih AJ (2007) A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling—theoretical and experimental studies. Int J Heat Mass Transf 50(17–18):3265–3277CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang JJ, Wang DZ (2018) Investigations of tangential ultrasonic vibration turning of Ti6Al4V using finite element method. Int J Mater Form 1–11Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai University of Engineering ScienceShanghaiChina

Personalised recommendations