Advertisement

An advanced FE-modeling approach to improve the prediction in machining difficult-to-cut material

  • Bingxiao PengEmail author
  • Thomas Bergs
  • Fritz Klocke
  • Benjamin Döbbeler
ORIGINAL ARTICLE
  • 2 Downloads

Abstract

Since the 1960s, the Inconel Alloy 718 has been a standard nickel-based superalloy due to its high strength, balanced mechanical properties, and strong corrosion resistance at relatively low costs and has been widely used in critical aircraft engine components. With the aim of improving productivity and product quality by implementing advanced tools and new process designs, models such as the FE model are utilized to predict the machining performance such as the cutting forces, the tool life, and the surface integrity. In the research area of FEM chip formation simulation, the influence of flank wear on predictions has not been investigated, especially not on the underestimation of the cutting normal force. In this paper, a 2D FEM chip formation model with the coupled Eulerian-Lagrangian (CEL) method has been built to predict cutting forces as well as other material loadings (Brinksmeier et al. Procedia CIRP 13:429–434, 2014; Buchkremer and Klocke Wear 376-377:1156–1163, 2017) in the machining of Direct Aged 718. In order to validate the performance of the FE model, fundamental investigations have been performed in orthogonal cutting with different cutting parameters. Two kinds of cemented carbide cutting tools with different cobalt contents have been applied to achieve different tool wear behaviors. Moreover, the underestimation of the cutting normal force by FEM chip formation simulation has been investigated and solved in consideration of the flank wear. The introduced FE-modeling approach shows precise predictions in terms of the cutting forces and the chip formation.

Keywords

Orthogonal cutting DA 718 FEM chip formation Coupled Eulerian-Lagrangian Flank wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

The authors would like to thank the German Research Foundation (DFG) for the funding of the depicted research within the project ”Modelling of broaching processes by multi-scale discretization” (KL 500/159-1).

References

  1. 1.
    Abaqus V (2014) 6.14 documentation. Dassault Systemes Simulia Corporation 651Google Scholar
  2. 2.
    Agmell M, Bushlya V, Laakso SVA, Ahadi A, Ståhl JE (2018) Development of a simulation model to study tool loads in pcbn when machining aisi 316l. Int J Adv Manuf Technol 96(5-8):2853–2865.  https://doi.org/10.1007/s00170-018-1673-y CrossRefGoogle Scholar
  3. 3.
    Arrazola PJ, Aristimuno P, Soler D, Childs T (2015) Metal cutting experiments and modelling for improved determination of chip/tool contact temperature by infrared thermography. CIRP Ann 64(1):57–60.  https://doi.org/10.1016/j.cirp.2015.04.061 CrossRefGoogle Scholar
  4. 4.
    Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52(1):31–42.  https://doi.org/10.1016/j.ijmecsci.2009.10.001 CrossRefGoogle Scholar
  5. 5.
    Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718.  https://doi.org/10.1016/j.cirp.2013.05.006 CrossRefGoogle Scholar
  6. 6.
    Biermann D, Hollmann F (2018) Thermal effects in complex machining processes: Final report of the DFG priority programme. In: Lecture Notes in Production Engineering. Springer International Publishing and Imprint, vol 1480. Springer, ChamGoogle Scholar
  7. 7.
    Biermann D, Oezkaya E (2017) CFD simulation for internal coolant channel design of tapping tools to reduce tool wear. CIRP Ann 66(1):109–112.  https://doi.org/10.1016/j.cirp.2017.04.024 CrossRefGoogle Scholar
  8. 8.
    Binder M (2017) Mechanismenbasierte Verschleißsimulation zur integrierten Werkzeug- und Prozessauslegung. Dissertation RWTH Aachen and IIF - Institut für Industriekommunikation und Fachmedien GmbHGoogle Scholar
  9. 9.
    Brinksmeier E, Klocke F, Lucca DA, Sölter J., Meyer D (2014) Process signatures – a new approach to solve the inverse surface integrity problem in machining processes. Procedia CIRP 13:429–434.  https://doi.org/10.1016/j.procir.2014.04.073 CrossRefGoogle Scholar
  10. 10.
    Buchkremer S, Klocke F (2017) Compilation of a thermodynamics based process signature for the formation of residual surface stresses in metal cutting. Wear 376-377:1156–1163.  https://doi.org/10.1016/j.wear.2016.11.013 CrossRefzbMATHGoogle Scholar
  11. 11.
    Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int J Mach Tools Manuf 48(3-4):275–288.  https://doi.org/10.1016/j.ijmachtools.2007.10.014 CrossRefGoogle Scholar
  12. 12.
    Chen G, Ren C, Yang X, Jin X, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int J Adv Manuf Technol 56(9-12):1027–1038.  https://doi.org/10.1007/s00170-011-3233-6 CrossRefGoogle Scholar
  13. 13.
    Courbon C, Mabrouki T, Rech J, Mazuyer D, D’Eramo E (2013) On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045: Formation mechanisms and influence on the cutting process. Appl Therm Eng 50(1):1311–1325.  https://doi.org/10.1016/j.applthermaleng.2012.06.047 CrossRefGoogle Scholar
  14. 14.
    Courbon C, Sajn V, Kramar D, Rech J, Kosel F, Kopac J (2011) Investigation of machining performance in high pressure jet assisted turning of Inconel 718: A numerical model. J Mater Process Technol 211(11):1834–1851.  https://doi.org/10.1016/j.jmatprotec.2011.06.006 CrossRefGoogle Scholar
  15. 15.
    Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D (2007) Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7-8):931–942.  https://doi.org/10.1016/j.wear.2006.10.009 CrossRefGoogle Scholar
  16. 16.
    Erice B, Gálvez F (2014) A coupled elastoplastic-damage constitutive model with lode angle dependent failure criterion. Int J Solids Struct 51(1):93–110.  https://doi.org/10.1016/j.ijsolstr.2013.09.015 CrossRefGoogle Scholar
  17. 17.
    Hoppe S (2003) Experimental and numerical analysis of chip formation in metal cutting. Dissertation. RWTH Aachen, AachenGoogle Scholar
  18. 18.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Procedings of the 7th int. symposium on ballistics, the hague, The Netherlands, pp 541–547Google Scholar
  19. 19.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48.  https://doi.org/10.1016/0013-7944(85)90052-9 CrossRefGoogle Scholar
  20. 20.
    Klocke F (2011) Manufacturing process. RWTH edition. Springer, BerlinGoogle Scholar
  21. 21.
    Klocke F, Döbbeler B, Peng B, Lakner T (2017) FE-simulation of the cutting process under consideration of cutting fluid. Procedia CIRP 58:341–346.  https://doi.org/10.1016/j.procir.2017.03.235 CrossRefGoogle Scholar
  22. 22.
    Klocke F, Döbbeler B, Peng B, Schneider S (2018) Tool-based inverse determination of material model of direct aged alloy 718 for fem cutting simulation. Procedia CIRP 77:54–57.  https://doi.org/10.1016/j.procir.2018.08.211 CrossRefGoogle Scholar
  23. 23.
    Klocke F, Gierlings S, Vogtel P, Veselovac D, Lung D (2012) Impact of cutting speed and material on surface quality in broaching of Nickel-Based Alloys. Ninth international conference on High Speed Machining HSM, San Sebastian, Spain, pp 978–984Google Scholar
  24. 24.
    Krueger DD (1989) The development of Direct Age 718 for gas turbine engine disk applications. Superalloy 718: Metallurgy and Applications 1989:279–296CrossRefGoogle Scholar
  25. 25.
    Laakso SV, Agmell M, Ståhl JE (2018) The mystery of missing feed force — the effect of friction models, flank wear and ploughing on feed force in metal cutting simulations. J Manuf Process 33:268–277.  https://doi.org/10.1016/j.jmapro.2018.05.024 CrossRefGoogle Scholar
  26. 26.
    Lane BM, Dow TA, Scattergood R (2013) Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel. Wear 300(1-2):216–224.  https://doi.org/10.1016/j.wear.2013.02.012 CrossRefGoogle Scholar
  27. 27.
    Lorentzon J, Järvstråt N (2008) Modelling tool wear in cemented- carbide machining alloy 718. Int J Mach Tools Manuf 48(10): 1072–1080.  https://doi.org/10.1016/j.ijmachtools.2008.03.001 CrossRefGoogle Scholar
  28. 28.
    Oberwinkler B (2016) Integrated process modeling for the mechanical properties optimization of Direct Aged Alloy 718.  https://doi.org/10.1002/9781119075646.ch55
  29. 29.
    Oxley PLB (1963) Rate of strain effect in metal cutting. Journal of Engineering for Industry 85(4):335.  https://doi.org/10.1115/1.3669884 CrossRefGoogle Scholar
  30. 30.
    Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46(5):518–530.  https://doi.org/10.1016/j.ijmachtools.2005.07.001 CrossRefGoogle Scholar
  31. 31.
    Pirso J, Letunovitš S, Viljus M (2004) Friction and wear behaviour of cemented carbides. Wear 257(3-4):257–265.  https://doi.org/10.1016/j.wear.2003.12.014 CrossRefGoogle Scholar
  32. 32.
    Puls H, Klocke F, Lung D (2014) Experimental investigation on friction under metal cutting conditions. Wear 310(1-2):63–71.  https://doi.org/10.1016/j.wear.2013.12.020 CrossRefGoogle Scholar
  33. 33.
    Puls H, Klocke F, Veselovac D (2015// 2016) FEM-based prediction of heat partition in dry metal cutting of AISI 1045. Int J Adv Manuf Technol 86(1-4):737–745.  https://doi.org/10.1007/s00170-015-8190-z
  34. 34.
    Rech J, Arrazola PJ, Claudin C, Courbon C, Pusavec F, Kopac J (2013) Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann Manuf Technol 62(1):79–82.  https://doi.org/10.1016/j.cirp.2013.03.099 CrossRefGoogle Scholar
  35. 35.
    Saito H, Iwabuchi A, Shimizu T (2006) Effects of Co content and WC grain size on wear of WC cemented carbide. Wear 261(2):126–132.  https://doi.org/10.1016/j.wear.2005.09.034 CrossRefGoogle Scholar
  36. 36.
    Seimann M, Peng B, Fischersworring-Bunk A, Rauch S, Klocke F, Döbbeler B (2018) Model-based analysis in finish broaching of Inconel 718. Int J Adv Manuf Technol 97(9-12):3751–3760.  https://doi.org/10.1007/s00170-018-2221-5 CrossRefGoogle Scholar
  37. 37.
    Usui E, Shirikashi ST, Kitagawa T (1984) Analytical prediction of cutting tool wear. Wear 1984 // 100(1-3):129–151.  https://doi.org/10.1016/0043-1648(84)90010-3 CrossRefGoogle Scholar
  38. 38.
    Vogtel P, Klocke F, Puls H, Buchkremer S, Lung D (2013) Modelling of process forces in broaching Inconel 718. Procedia CIRP 8:409–414CrossRefGoogle Scholar
  39. 39.
    Wan M, Ye XY, Wen DY, Zhang WH (2019) Modeling of machining-induced residual stresses. J Mater Sci 54(1):1–35.  https://doi.org/10.1007/s10853-018-2808-0 CrossRefGoogle Scholar
  40. 40.
    Yen YC, Söhner J, Lilly B, Altan T (2004) Estimation of tool wear in orthogonal cutting using the finite element analysis. J Mater Process Technol 146(1):82–91.  https://doi.org/10.1016/S0924-0136(03)00847-1 CrossRefGoogle Scholar
  41. 41.
    Zemzemi F, Rech J, Salem WB, Dogui A, Kapsa P (2014) Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools. Advances in Manufacturing Science and Technology 38(1).  https://doi.org/10.2478/amst-2014-0001
  42. 42.
    Zhang Y, Outeiro JC, Mabrouki T (2015) On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP 31:112–117.  https://doi.org/10.1016/j.procir.2015.03.052 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations