Manufacturing poly(lactic acid)/metal composites and their characterization

  • Sergey M. LebedevEmail author


The influence of metal powders on the rheological, thermal properties, and IR spectra of poly(lactic acid)/metal (PLA/metal) composites has been studied in this paper. It was found that loading of tungsten and lead powders into PLA results in the anomalous decrease in viscosity of composites. The melting point and decomposition temperature are decreased by 1.5–5.0 °C and 50–60 °C compared to those for neat PLA with filling.


Poly(lactic acid) Heavy metal powders Rheological properties FTIR spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

The author is grateful for the financial support for this work from the National Research Tomsk Polytechnic University (project СERC-NMNT-TPU-223/2018).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. 1.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRefGoogle Scholar
  2. 2.
    Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRefGoogle Scholar
  3. 3.
    Sitharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson LJ, Mikos AG, Jansen JA (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43:362–370CrossRefGoogle Scholar
  4. 4.
    Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Part A: Pure Appl Chem 33:585–597CrossRefGoogle Scholar
  5. 5.
    Ching C, Kaplan DL, Thomas EL (eds) (1993) Biodegradable Polymers and Packaging. Technomic Pub Co, Inc., Lancaster PAGoogle Scholar
  6. 6.
    Abdel-Aziz MM, Badran AS, Abdel-Hakem AA, Helaly FM, Moustafa AB (1991) Styrene-butadiene rubber/lead oxide composites as gamma radiation shields. J Appl Polym Sci 42:1073–1080CrossRefGoogle Scholar
  7. 7.
    Tajiri M, Sunaoka M, Fukumura A, Endo M (2004) A new radiation shielding block material for radiation therapy. Med Phys 31:3022–3023CrossRefGoogle Scholar
  8. 8.
    Purdy JA, Choi MC, Feldman A (1980) Lipowitz metal shielding thickness for dose reduction of 6–20 MeV electrons. Med Phys 7:251–253CrossRefGoogle Scholar
  9. 9.
    Soylu HM, Lambrecht FY, Ersöz OA (2015) Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem 305:529–534CrossRefGoogle Scholar
  10. 10.
    Nambiar S, Yeow JTW (2012) Polymer-composite materials for radiation protection. Appl Mater Interfaces 4:5717–5726CrossRefGoogle Scholar
  11. 11.
    Dubrovskii VB (Ed.) (1973) Radiation resistance of materials. Reference book. Atomizdat: Moscow (in Russian)Google Scholar
  12. 12.
    McCaffrey JP, Tessier F, Shen H (2012) Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med Phys 39:4537–4546CrossRefGoogle Scholar
  13. 13.
    Bormotov AN, Proshin AP, Bazhenov YM, Danilov AM, Sokolova YA (2006) Polymer composite materials for radiation protection. Paleotype: Moscow (in Russian)Google Scholar
  14. 14.
    Horáček I, Kudláček L (1993) Influence of molecular weight on the resistance of polylactide fibers by radiation. J Appl Polym Sci 50:1–5CrossRefGoogle Scholar
  15. 15.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  16. 16.
    Oliveira JE, Luiz HC, Mattoso LHC, Orts WJ, Medeiros ES (2013) Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sci Eng.
  17. 17.
    Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526CrossRefGoogle Scholar
  18. 18.
    Kister G, Cassanas G, Vert M, Pauvert B, Terol A (1995) Vibrational analysis of poly(L-lactic acid). J Raman Spectrosc 26:307–311CrossRefGoogle Scholar
  19. 19.
    Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRefGoogle Scholar
  20. 20.
    Younes H, Cohn D (1988) Phase separation in poly(ethylene glycol)/poly(lactic acid) blends. Eur Polym J 24:765–773CrossRefGoogle Scholar
  21. 21.
    McQuillen FJ (1976) Homogeneous hydrogenation in organic chemistry. D Reidel Publ Co, DordrechtGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations