Advertisement

Powder metallurgy of stainless steels and composites: a review of mechanical alloying and spark plasma sintering

  • Samuel Ranti OkeEmail author
  • Oladeji Oluremi Ige
  • Oluwasegun Eso Falodun
  • Avwerosuoghene M. Okoro
  • Mahlatse R. Mphahlele
  • Peter Apata Olubambi
ORIGINAL ARTICLE

Abstract

Although SPS has been studied for a rapidly growing number of materials, there is limited number of researches on the fabrication and microstructural characterization of stainless steels processed by SPS. This article reviewed and provided a critical discussion on the mechanical alloying (MA) and spark plasma sintering (SPS) of dispersion-strengthened stainless steel with emphasis on process parameters, reinforcement efficiencies, microstructural evolutions, and mechanical properties. The influence of spark plasma sintering process parameters on microstructure, phase evolution, and mechanical properties of reinforced stainless steels is reviewed in this work. The role of alloying elements and ceramic reinforcements, their dispersion into the stainless steel matrix, and the importance of matrix-reinforcement interface are highlighted. Current and potential areas of applications of PM stainless steel and suggestions for future research are discussed in this paper.

Keywords

Powder metallurgy Stainless steels Mechanical alloying (MA) Spark plasma sintering (SPS) Properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

Financial support was provided by the National Research Foundation of South Africa in association with The World Academy of Science (NRF-TWAS) as well as the Global Excellence and Stature (GES) of the University of Johannesburg, South Africa.

References

  1. 1.
    Karahan T, Ertek Emre H, Tümer M, Kaçar R (2014) Strengthening of AISI 2205 duplex stainless steel by strain ageing. Mater Des 55:250–256.  https://doi.org/10.1016/j.matdes.2013.09.065 CrossRefGoogle Scholar
  2. 2.
    Obadele BA, Masuku ZH, Olubambi PA (2012) Turbula mixing characteristics of carbide powders and its influence on laser processing of stainless steel composite coatings. Powder Technol 230:169–182.  https://doi.org/10.1016/j.powtec.2012.07.025 CrossRefGoogle Scholar
  3. 3.
    Sherif E-SM, Potgieter JH, Comins JD, Cornish L, Olubambi PA, Machio CN (2009) The beneficial effect of ruthenium additions on the passivation of duplex stainless steel corrosion in sodium chloride solutions. Corros Sci 51(6):1364–1371.  https://doi.org/10.1016/j.corsci.2009.03.022 CrossRefGoogle Scholar
  4. 4.
    Gupta RK, Birbilis N (2015) The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros Sci 92:1–15.  https://doi.org/10.1016/j.corsci.2014.11.041 CrossRefGoogle Scholar
  5. 5.
    Kimura A, Kasada R, Iwata N, Kishimoto H, Zhang CH, Isselin J, Dou P, Lee JH, Muthukumar N, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe TF (2011) Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater 417(1–3):176–179.  https://doi.org/10.1016/j.jnucmat.2010.12.300 CrossRefGoogle Scholar
  6. 6.
    Zavieh AH, Espallargas N (2016) Effect of 4-point bending and normal load on the tribocorrosion-fatigue (multi-degradation) of stainless steels. Tribol Int 99:96–106.  https://doi.org/10.1016/j.triboint.2016.03.016 CrossRefGoogle Scholar
  7. 7.
    Tański T, Brytan Z, Labisz K (2014) Fatigue behaviour of sintered duplex stainless steel. Procedia Eng 74:421–428.  https://doi.org/10.1016/j.proeng.2014.06.293 CrossRefGoogle Scholar
  8. 8.
    Shashanka R, Chaira D (2016) Effects of Nano-Y2O3 and sintering parameters on the fabrication of PM duplex and ferritic stainless steels. Acta Metall Sin (English Letters) 29(1):58–71.  https://doi.org/10.1007/s40195-015-0362-1 CrossRefGoogle Scholar
  9. 9.
    Chail G, Kangas P (2016) Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr 2:1755–1762.  https://doi.org/10.1016/j.prostr.2016.06.221 CrossRefGoogle Scholar
  10. 10.
    García C, Martín F, Blanco Y, Aparicio ML (2010) Effect of ageing heat treatments on the microstructure and intergranular corrosion of powder metallurgy duplex stainless steels. Corros Sci 52(11):3725–3737.  https://doi.org/10.1016/j.corsci.2010.07.023 CrossRefGoogle Scholar
  11. 11.
    Uzunsoy D (2010) Investigation of dry sliding wear properties of boron doped powder metallurgy 316L stainless steel. Mater Des 31(8):3896–3900.  https://doi.org/10.1016/j.matdes.2010.02.053 CrossRefGoogle Scholar
  12. 12.
    Kurgan N (2013) Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel. Mater Des (1980–2015) 52:995–998.  https://doi.org/10.1016/j.matdes.2013.06.035 CrossRefGoogle Scholar
  13. 13.
    Fallahdoost H, Khorsand H, Eslami-Farsani R, Ganjeh E (2014) On the tribological behavior of nanoalumina reinforced low alloy sintered steel. Mater Des 57:60–66.  https://doi.org/10.1016/j.matdes.2013.12.030 CrossRefGoogle Scholar
  14. 14.
    Oke SR, Ige OO, Falodun OE, Obadele BA, Mphahlele MR, Olubambi PA (2018) Influence of sintering process parameters on corrosion and wear behaviour of SAF 2205 reinforced with nano-sized TiN. Mater Chem Phys 206:166–173.  https://doi.org/10.1016/j.matchemphys.2017.12.018 CrossRefGoogle Scholar
  15. 15.
    Salahinejad E, Amini R, Hadianfard MJ (2012) Structural evolution during mechanical alloying of stainless steels under nitrogen. Powder Technol 215-216:247–253.  https://doi.org/10.1016/j.powtec.2011.10.012 CrossRefGoogle Scholar
  16. 16.
    Oke SR, Ige OO, Falodun OE, Obadele BA, Shongwe MB, Olubambi PA (2018) Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite. J Mater Res Technol 7(2):126–134.  https://doi.org/10.1016/j.jmrt.2017.03.004 CrossRefGoogle Scholar
  17. 17.
    Oke SR, Ige OO, Falodun OE, Obadele BA, Mphahlele MR, Olubambi PA, Ige OO (2018) Dependence of wear and corrosion properties on holding time of spark plasma sintered SAF 2205 reinforced with TiN nanoparticles. In: 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), 10–13 Feb 2018. pp 80–84.  https://doi.org/10.1109/ICMIMT.2018.8340425
  18. 18.
    Salahinejad E, Amini R, Marasi M, Hadianfard MJ (2010) Microstructure and wear behavior of a porous nanocrystalline nickel-free austenitic stainless steel developed by powder metallurgy. Mater Des 31(4):2259–2263.  https://doi.org/10.1016/j.matdes.2009.10.008 CrossRefGoogle Scholar
  19. 19.
    Hu Z, Ning K, Lu K (2016) Study of spark plasma sintered nanostructured ferritic steel alloy with silicon carbide addition. Mater Sci Eng A 670:75–80.  https://doi.org/10.1016/j.msea.2016.06.003 CrossRefGoogle Scholar
  20. 20.
    Babakhani A, Zahabi E, Mehrabani HY (2012) Fabrication of Fe/Al2O3 composite foam via combination of combustion synthesis and spark plasma sintering techniques. J Alloys Compd 514:20–24.  https://doi.org/10.1016/j.jallcom.2011.09.070 CrossRefGoogle Scholar
  21. 21.
    Sulima I, Kowalik R (2015) Corrosion behaviors, mechanical properties and microstructure of the steel matrix composites fabricated by HP–HT method. Mater Sci Eng A 639:671–680.  https://doi.org/10.1016/j.msea.2015.05.077 CrossRefGoogle Scholar
  22. 22.
    Wang K, Wang Y, Fan Z, Yan J, Wei T (2011) Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater Res Bull 46(2):315–318.  https://doi.org/10.1016/j.materresbull.2010.11.005 CrossRefGoogle Scholar
  23. 23.
    Zhang Z-H, Liu Z-F, Lu J-F, Shen X-B, Wang F-C, Wang Y-D (2014) The sintering mechanism in spark plasma sintering – proof of the occurrence of spark discharge. Scr Mater 81:56–59.  https://doi.org/10.1016/j.scriptamat.2014.03.011 CrossRefGoogle Scholar
  24. 24.
    Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227.  https://doi.org/10.1016/j.powtec.2012.01.005 CrossRefGoogle Scholar
  25. 25.
    Patankar SN, Tan MJ (2000) Role of reinforcement in sintering of SiC/316L stainless steel composite. Powder Metall 43(4):350–352.  https://doi.org/10.1179/003258900666078 CrossRefGoogle Scholar
  26. 26.
    Mukherjee SK, Upadhyaya GS (1985) Corrosion behaviour of sintered 434L ferritic stainless steel-Al2O3 composites containing phosphorus. Corros Sci 25(7):463–470.  https://doi.org/10.1016/0010-938X(85)90025-3 CrossRefGoogle Scholar
  27. 27.
    Tjong SC, Lau KC (2000) Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles. Compos Sci Technol 60(8):1141–1146.  https://doi.org/10.1016/S0266-3538(00)00008-7 CrossRefGoogle Scholar
  28. 28.
    Murty BS, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43(3):101–141.  https://doi.org/10.1179/imr.1998.43.3.101 CrossRefGoogle Scholar
  29. 29.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184.  https://doi.org/10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  30. 30.
    Suryanarayana C, Ivanov E, Boldyrev VV (2001) The science and technology of mechanical alloying. Mater Sci Eng A 304-306:151–158.  https://doi.org/10.1016/S0921-5093(00)01465-9 CrossRefGoogle Scholar
  31. 31.
    Baldokhin YV, Cherdyntsev VV (2018) Local structure of Fe–Cr powders prepared by mechanical alloying. Inorg Mater 54(6):537–545.  https://doi.org/10.1134/S0020168518060018 CrossRefGoogle Scholar
  32. 32.
    Cherdyntsev VV, Kaloshkin SD (2010) On the kinetics of phase and structural transformations upon mechanical alloying. Phys Met Metallogr 109(5):492–504.  https://doi.org/10.1134/S0031918X10050108 CrossRefGoogle Scholar
  33. 33.
    Shashanka R, Chaira D (2015) Optimization of milling parameters for the synthesis of nano-structured duplex and ferritic stainless steel powders by high energy planetary milling. Powder Technol 278:35–45.  https://doi.org/10.1016/j.powtec.2015.03.007 CrossRefGoogle Scholar
  34. 34.
    Enayati MH, Mohamed FA (2014) Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int Mater Rev 59(7):394–416.  https://doi.org/10.1179/1743280414Y.0000000036 CrossRefGoogle Scholar
  35. 35.
    Safaie N, Khakbiz M, Sheibani S, Bagha PS (2015) Synthesizing of nanostructured Fe-Mn alloys by mechanical alloying process. Procedia Mater Sci 11:381–385.  https://doi.org/10.1016/j.mspro.2015.11.134 CrossRefGoogle Scholar
  36. 36.
    Rahmanifard R, Farhangi H, Novinrooz AJ (2015) Effect of zirconium and tantalum on the microstructural characteristics of 12YWT ODS steel nanocomposite. J Alloys Compd 622:948–952.  https://doi.org/10.1016/j.jallcom.2014.11.018 CrossRefGoogle Scholar
  37. 37.
    Al-Joubori AA, Suryanarayana C (2017) Synthesis and stability of the austenite phase in mechanically alloyed Fe–Cr–Ni alloys. Mater Lett 187:140–143.  https://doi.org/10.1016/j.matlet.2016.10.084 CrossRefGoogle Scholar
  38. 38.
    Enayati MH, Bafandeh MR (2008) Phase transitions in nanostructured Fe–Cr–Ni alloys prepared by mechanical alloying. J Alloys Compd 454(1):228–232.  https://doi.org/10.1016/j.jallcom.2007.03.064 CrossRefGoogle Scholar
  39. 39.
    Kaloshkin SD, Tcherdyntsev VV, Tomilin IA, Baldokhin YV, Shelekhov EV (2001) Phase transformations in Fe–Ni system at mechanical alloying and consequent annealing of elemental powder mixtures. Phys B Condens Matter 299(3):236–241.  https://doi.org/10.1016/S0921-4526(01)00473-2 CrossRefGoogle Scholar
  40. 40.
    Enayati MH, Bafandeh MR, Nosohian S (2007) Ball milling of stainless steel scrap chips to produce nanocrystalline powder. J Mater Sci 42(8):2844–2848.  https://doi.org/10.1007/s10853-006-1371-2 CrossRefGoogle Scholar
  41. 41.
    Wang M, Sun H, Zou L, Zhang G, Li S, Zhou Z (2015) Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation. Powder Technol 272:309–315.  https://doi.org/10.1016/j.powtec.2014.12.008 CrossRefGoogle Scholar
  42. 42.
    Huang H, Ding J, McCormick PG (1996) Microstructural evolution of 304 stainless steel during mechanical milling. Mater Sci Eng A 216(1):178–184.  https://doi.org/10.1016/0921-5093(96)10412-3 CrossRefGoogle Scholar
  43. 43.
    Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58(4):383–502.  https://doi.org/10.1016/j.pmatsci.2012.10.001 CrossRefGoogle Scholar
  44. 44.
    Nouri A, Wen C (2014) Surfactants in mechanical alloying/milling: a Catch-22 situation. Crit Rev Solid State Mater Sci 39(2):81–108.  https://doi.org/10.1080/10408436.2013.808985 CrossRefGoogle Scholar
  45. 45.
    Kotan H, Darling KA (2018) A study of microstructural evolution of Fe-18Cr-8Ni, Fe-17Cr-12Ni, and Fe-20Cr-25Ni stainless steels after mechanical alloying and annealing. Mater Charact 138:186–194.  https://doi.org/10.1016/j.matchar.2018.02.001 CrossRefGoogle Scholar
  46. 46.
    Freudenberger J, Gaganov A, Hickman AL, Jones H (2003) Mechanical behaviour of high nitrogen stainless steel reinforced conductor for use in pulsed high field magnets at cryogenic temperature. Cryogenics 43(2):133–136.  https://doi.org/10.1016/S0011-2275(03)00051-1 CrossRefGoogle Scholar
  47. 47.
    Amini R, Hadianfard MJ, Salahinejad E, Marasi M, Sritharan T (2008) Microstructural phase evaluation of high-nitrogen Fe–Cr–Mn alloy powders synthesized by the mechanical alloying process. J Mater Sci 44(1):136–148.  https://doi.org/10.1007/s10853-008-3117-9 CrossRefGoogle Scholar
  48. 48.
    Haghir T, Abbasi MH, Golozar MA, Panjepour M (2009) Investigation of α to γ transformation in the production of a nanostructured high-nitrogen austenitic stainless steel powder via mechanical alloying. Mater Sci Eng A 507(1):144–148.  https://doi.org/10.1016/j.msea.2008.12.033 CrossRefGoogle Scholar
  49. 49.
    Duan C, Shen Y, Feng X, Chen C, Zhang J (2016) Nitriding of Fe–18Cr–11Mn powders using mechanical alloying method through aerating nitrogen circularly. Mater Sci Technol 32(12):1231–1239.  https://doi.org/10.1080/02670836.2015.1115244 CrossRefGoogle Scholar
  50. 50.
    Liu J, Li G-Q, Peng B, Zhang X (2007) Effect of nitrogen on structure and properties of ultra-fine austenitic stainless steel. J Iron Steel Res Int 14 (5, Supplement 1):310–315. doi: https://doi.org/10.1016/S1006-706X(08)60101-6
  51. 51.
    Toor I-u-H, Ahmed J, Hussein MA, Al-Aqeeli N (2016) Optimization of process parameters for spark plasma sintering of nano-structured ferritic Fe-18Cr-2Si alloy. Powder Technol 299:62–70.  https://doi.org/10.1016/j.powtec.2016.05.041 CrossRefGoogle Scholar
  52. 52.
    Pandey A, Jayasankar K, Parida P, Debata M, Mishra BK, Saroja S (2014) Optimization of milling parameters, processing and characterization of nano-crystalline oxide dispersion strengthened ferritic steel. Powder Technol 262:162–169.  https://doi.org/10.1016/j.powtec.2014.04.070 CrossRefGoogle Scholar
  53. 53.
    Liu XJ, Xu ZZ, Xiao H, Park DK, Kim KW, Kim YC, Yeon SH, Ahn IS (2014) The effect of process control agents and ball to powder rations on the electrochemical characteristics of mechanically alloyed SnS2 anode materials. Powder Technol 259:117–124.  https://doi.org/10.1016/j.powtec.2014.03.052 CrossRefGoogle Scholar
  54. 54.
    Hongbin W, Qizheng L, Jihua Z, Hsu TY (2003) The size effect on the phase stability of nanograined Fe–12Ni powders and the magnetic separation of face-centred-cubic–body-centred-cubic phases. Nanotechnology 14(7):696CrossRefGoogle Scholar
  55. 55.
    Xia YP, Wang XP, Zhuang Z, Sun QX, Zhang T, Fang QF, Hao T, Liu CS (2013) Microstructure and oxidation properties of 16Cr–5Al–ODS steel prepared by sol–gel and spark plasma sintering methods. J Nucl Mater 432(1–3):198–204.  https://doi.org/10.1016/j.jnucmat.2012.07.039 CrossRefGoogle Scholar
  56. 56.
    Rahmanifard R, Farhangi H, Novinrooz AJ (2010) Optimization of mechanical alloying parameters in 12YWT ferritic steel nanocomposite. Mater Sci Eng A 527(26):6853–6857.  https://doi.org/10.1016/j.msea.2010.07.048 CrossRefGoogle Scholar
  57. 57.
    Li Z, Lu Z, Xie R, Lu C, Liu C (2016) Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels. Mater Sci Eng A 660:52–60.  https://doi.org/10.1016/j.msea.2016.02.073 CrossRefGoogle Scholar
  58. 58.
    Nayak AK, Shashanka R, Chaira D (2016) Effect of Nanosize Yittria and tungsten addition to duplex stainless steel during high energy planetary milling. IOP Conf Ser Mater Sci Eng 115(1):012008CrossRefGoogle Scholar
  59. 59.
    Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-018-03281-x
  60. 60.
    Okoro AM, Lephuthing SS, Oke SR, Falodun OE, Awotunde MA, Olubambi PA (2018) A review of spark plasma sintering of carbon nanotubes reinforced titanium-based nanocomposites: fabrication, densification, and mechanical properties. JOM.  https://doi.org/10.1007/s11837-018-3277-2
  61. 61.
    Sulima I (2015) Consolidation of AISI316L austenitic steel—TiB2 composites by SPS and HP-HT technology. In: Sintering techniques of materials. InTechGoogle Scholar
  62. 62.
    Oke S, Ige O, Falodun O, Mphahlele MR, Olubambi P (2018) Densification behavior of spark plasma sintered duplex stainless steel reinforced with TiN nanoparticles. In: IOP Conference Series: Materials Science and Engineering, vol 1. IOP Publishing, p 012034Google Scholar
  63. 63.
    Marnier G, Keller C, Noudem J, Hug E (2014) Functional properties of a spark plasma sintered ultrafine-grained 316L steel. Mater Des 63:633–640CrossRefGoogle Scholar
  64. 64.
    Yang J, Trapp J, Guo Q, Kieback B (2013) Joining of 316L stainless steel by using spark plasma sintering method. Mater Des (1980–2015) 52:179–189CrossRefGoogle Scholar
  65. 65.
    Chaira D (2015) Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering. Mater Charact 99:220–229CrossRefGoogle Scholar
  66. 66.
    Cui G, Wei X, Olevsky EA, German RM, Chen J (2016) Preparation of high performance bulk Fe–N alloy by spark plasma sintering. Mater Des 90:115–121CrossRefGoogle Scholar
  67. 67.
    Sulima I, Putyra P, Hyjek P, Tokarski T (2015) Effect of SPS parameters on densification and properties of steel matrix composites. Adv Powder Technol 26(4):1152–1161CrossRefGoogle Scholar
  68. 68.
    Almathami A, Brochu M (2010) Microstructure and transformation of Al-containing nanostructured 316L stainless steel coatings processed using spark plasma sintering. J Mater Process Technol 210(15):2119–2124.  https://doi.org/10.1016/j.jmatprotec.2010.07.023 CrossRefGoogle Scholar
  69. 69.
    Coovattanachai O, Tosangthum N, Morakotjinda M, Yotkaew T, Daraphan A, Krataitong R, Vetayanugul B, Tongsri R (2007) Performance improvement of P/M 316L by addition of liquid phase forming powder. Mater Sci Eng A 445-446:440–445.  https://doi.org/10.1016/j.msea.2006.09.105 CrossRefGoogle Scholar
  70. 70.
    Rieth M, Dudarev SL, Gonzalez de Vicente SM, Aktaa J, Ahlgren T, Antusch S, Armstrong DEJ, Balden M, Baluc N, Barthe MF, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, De Backer A, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra TP, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L, Rosiński M, Sanchez M, Schulmeyer W, Traxler H, Ureña A, van der Laan JG, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar MA, You JH, Zivelonghi A (2013) Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater 432(1):482–500.  https://doi.org/10.1016/j.jnucmat.2012.08.018 CrossRefGoogle Scholar
  71. 71.
    Norajitra P, Basuki WW, Spatafora L, Stegmaier U (2014) He-cooled Divertor for DEMO: technological study on joining tungsten components with titanium interlayer. Fusion Sci Technol 66(1):266–271.  https://doi.org/10.13182/FST13-739 CrossRefGoogle Scholar
  72. 72.
    Gonzalez-Arrabal R, Panizo-Laiz M, Gordillo N, Tejado E, Munnik F, Rivera A, Perlado JM (2014) Hydrogen accumulation in nanostructured as compared to the coarse-grained tungsten. J Nucl Mater 453(1):287–295.  https://doi.org/10.1016/j.jnucmat.2014.06.057 CrossRefGoogle Scholar
  73. 73.
    Tan C, Wang G, Ji L, Tong Y, Duan X-M (2016) Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering. J Nucl Mater 469:32–38.  https://doi.org/10.1016/j.jnucmat.2015.11.024 CrossRefGoogle Scholar
  74. 74.
    Matějíček J, Hanna B (2009) Processing and temperature-dependent properties of plasma-sprayed tungsten–stainless steel composites. Phys Scr 2009(T138):014041Google Scholar
  75. 75.
    Tan C, Wang C, Wang S, Wang G, Ji L, Tong Y, Duan X-M (2017) Investigation on 316L/316L-50W/W plate functionally graded materials fabricated by spark plasma sintering. Fusion Eng Des 125:171–177.  https://doi.org/10.1016/j.fusengdes.2017.08.001 CrossRefGoogle Scholar
  76. 76.
    Han Y, Dai Y, Shu D, Wang J, Sun B (2007) Electronic and bonding properties of TiB2. J Alloys Compd 438(1):327–331.  https://doi.org/10.1016/j.jallcom.2006.08.056 CrossRefGoogle Scholar
  77. 77.
    Mukhopadhyay A, Raju GB, Basu B, Suri AK (2009) Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics. J Eur Ceram Soc 29(3):505–516.  https://doi.org/10.1016/j.jeurceramsoc.2008.06.030 CrossRefGoogle Scholar
  78. 78.
    Sulima I, Boczkal S, Jaworska L (2016) SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact 118:560–569.  https://doi.org/10.1016/j.matchar.2016.07.005 CrossRefGoogle Scholar
  79. 79.
    Tokita M (2011) The potential of spark plasma sintering (SPS) method for the fabrication on an industrial scale of functionally graded materials. Adv Sci Technol 63:322–331.  https://doi.org/10.4028/www.scientific.net/AST.63.322 CrossRefGoogle Scholar
  80. 80.
    Tokita M (1993) Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol Jpn 30:790–804CrossRefGoogle Scholar
  81. 81.
    Sulima I (2015) Role of boron addition on the consolidation and properties of steel composites prepared by SPS. Bull Mater Sci 38(7):1831–1841.  https://doi.org/10.1007/s12034-015-0984-y CrossRefGoogle Scholar
  82. 82.
    Dybkov VI, Lengauer W, Barmak K (2005) Formation of boride layers at the Fe–10% Cr alloy–boron interface. J Alloys Compd 398(1):113–122.  https://doi.org/10.1016/j.jallcom.2005.02.033 CrossRefGoogle Scholar
  83. 83.
    Skałon M, Kazior J (2012) Enhanced sintering of austenitic stainless steel powder AISI 316L through boron containig master alloy addition. 57 (3):789. doi: https://doi.org/10.2478/v10172-012-0086-4
  84. 84.
    Molinari A, Kazior J, Straffelini G (1995) Investigation of liquid-phase sintering by image analysis. Mater Charact 34(4):271–276.  https://doi.org/10.1016/1044-5803(95)80081-6 CrossRefGoogle Scholar
  85. 85.
    Li B, Liu Y, Cao H, He L, Li J (2009) Rapid synthesis of TiB2/Fe composite in situ by spark plasma sintering. J Mater Sci 44(14):3909–3912.  https://doi.org/10.1007/s10853-009-3527-3 CrossRefGoogle Scholar
  86. 86.
    Li B, Liu Y, Li J, Cao H, He L (2010) Effect of sintering process on the microstructures and properties of in situ TiB2–TiC reinforced steel matrix composites produced by spark plasma sintering. J Mater Process Technol 210(1):91–95.  https://doi.org/10.1016/j.jmatprotec.2009.08.008 CrossRefGoogle Scholar
  87. 87.
    Ni Z, Sun Y, Xue F, Bai J, Lu Y (2011) Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate. Mater Des 32(3):1462–1467.  https://doi.org/10.1016/j.matdes.2010.08.047 CrossRefGoogle Scholar
  88. 88.
    Xu Z, Jia C, Kuang C, Chu K, Qu X (2009) Spark plasma sintering of nitrogen-containing nickel-free stainless steel powders and effect of sintering temperature. J Alloys Compd 484(1):924–928.  https://doi.org/10.1016/j.jallcom.2009.05.075 CrossRefGoogle Scholar
  89. 89.
    Phaniraj MP, Kim D-I, Shim J-H, Cho YW (2010) Cyclic oxidation of yttria dispersed austenitic stainless steels. Corros Sci 52(10):3573–3576.  https://doi.org/10.1016/j.corsci.2010.06.023 CrossRefGoogle Scholar
  90. 90.
    Boegelein T, Louvis E, Dawson K, Tatlock GJ, Jones AR (2016) Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel. Mater Charact 112:30–40.  https://doi.org/10.1016/j.matchar.2015.11.021 CrossRefGoogle Scholar
  91. 91.
    Hsiung L, Fluss M, Tumey S, Kuntz J, El-Dasher B, Wall M, Choi B, Kimura A, Willaime F, Serruys Y (2011) HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance. J Nucl Mater 409(2):72–79.  https://doi.org/10.1016/j.jnucmat.2010.09.014 CrossRefGoogle Scholar
  92. 92.
    Yutani K, Kishimoto H, Kasada R, Kimura A (2007) Evaluation of helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation. J Nucl Mater 367-370:423–427.  https://doi.org/10.1016/j.jnucmat.2007.03.016 CrossRefGoogle Scholar
  93. 93.
    Alinger MJ, Odette GR, Hoelzer DT (2009) On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys. Acta Mater 57(2):392–406.  https://doi.org/10.1016/j.actamat.2008.09.025 CrossRefGoogle Scholar
  94. 94.
    Allahar KN, Burns J, Jaques B, Wu YQ, Charit I, Cole J, Butt DP (2013) Ferritic oxide dispersion strengthened alloys by spark plasma sintering. J Nucl Mater 443(1):256–265.  https://doi.org/10.1016/j.jnucmat.2013.07.019 CrossRefGoogle Scholar
  95. 95.
    Ji G, Grosdidier T, Bozzolo N, Launois S (2007) The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics 15(2):108–118.  https://doi.org/10.1016/j.intermet.2006.03.006 CrossRefGoogle Scholar
  96. 96.
    Xie R, Lu Z, Lu C, Liu C (2014) Effects of mechanical alloying time on microstructure and properties of 9Cr–ODS steels. J Nucl Mater 455(1):554–560.  https://doi.org/10.1016/j.jnucmat.2014.08.042 CrossRefGoogle Scholar
  97. 97.
    Ramar A, Oksiuta Z, Baluc N, Schäublin R (2007) Effect of mechanical alloying on the mechanical and microstructural properties of ODS EUROFER 97. Fusion Eng Des 82(15):2543–2549.  https://doi.org/10.1016/j.fusengdes.2007.05.048 CrossRefGoogle Scholar
  98. 98.
    Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177.  https://doi.org/10.1016/S0921-5093(00)00771-1 CrossRefGoogle Scholar
  99. 99.
    Pasebani S, Charit I, Wu YQ, Butt DP, Cole JI (2013) Mechanical alloying of lanthana-bearing nanostructured ferritic steels. Acta Mater 61(15):5605–5617.  https://doi.org/10.1016/j.actamat.2013.06.002 CrossRefGoogle Scholar
  100. 100.
    Srinivasarao B, Oh-ishi K, Ohkubo T, Hono K (2009) Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering. Acta Mater 57(11):3277–3286.  https://doi.org/10.1016/j.actamat.2009.03.034 CrossRefGoogle Scholar
  101. 101.
    Laurent-Brocq M, Legendre F, Mathon MH, Mascaro A, Poissonnet S, Radiguet B, Pareige P, Loyer M, Leseigneur O (2012) Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels. Acta Mater 60(20):7150–7159.  https://doi.org/10.1016/j.actamat.2012.09.024 CrossRefGoogle Scholar
  102. 102.
    Brocq M, Radiguet B, Poissonnet S, Cuvilly F, Pareige P, Legendre F (2011) Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing. J Nucl Mater 409(2):80–85.  https://doi.org/10.1016/j.jnucmat.2010.09.011 CrossRefGoogle Scholar
  103. 103.
    Kimura A, Kasada R, Iwata N, Kishimoto H, Zhang CH, Isselin J, Dou P, Lee JH, Muthukumar N, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe TF (2011) Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater 417(1):176–179.  https://doi.org/10.1016/j.jnucmat.2010.12.300 CrossRefGoogle Scholar
  104. 104.
    Yamashita * S, Ohtsuka S, Akasaka N, Ukai S, Ohnuki S (2004) Formation of nanoscale complex oxide particles in mechanically alloyed ferritic steel. Philos Mag Lett 84(8):525–529.  https://doi.org/10.1080/09500830412331303609 CrossRefGoogle Scholar
  105. 105.
    Dou P, Kimura A, Kasada R, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F (2013) Effects of titanium concentration and tungsten addition on the nano-mesoscopic structure of high-Cr oxide dispersion strengthened (ODS) ferritic steels. J Nucl Mater 442(1, Supplement 1):S95–S100.  https://doi.org/10.1016/j.jnucmat.2013.04.090 CrossRefGoogle Scholar
  106. 106.
    Byun TS, Yoon JH, Wee SH, Hoelzer DT, Maloy SA (2014) Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness. J Nucl Mater 449(1):39–48.  https://doi.org/10.1016/j.jnucmat.2014.03.007 CrossRefGoogle Scholar
  107. 107.
    Maloy SA, Toloczko M, Cole J, Byun TS (2011) Core materials development for the fuel cycle R&D program. J Nucl Mater 415(3):302–305.  https://doi.org/10.1016/j.jnucmat.2011.04.027 CrossRefGoogle Scholar
  108. 108.
    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski RJ, Hasegawa A, Snead LL (2014) Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J Nucl Mater 448(1):448–476.  https://doi.org/10.1016/j.jnucmat.2013.06.040 CrossRefGoogle Scholar
  109. 109.
    García-Rodríguez N, Campos M, Torralba J, Berger M-H, Bienvenu Y (2014) Capability of mechanical alloying and SPS technique to develop nanostructured high Cr, Al alloyed ODS steels. Mater Sci Technol 30(13):1676–1684CrossRefGoogle Scholar
  110. 110.
    Hernández-Mayoral M, Serrano M, Onorbe E, García-Junceda A, Hilger I, Kloeden B, Weissgaerber T, Ulbricht A, Bergner F, Radiguet B (2014) Microstructural and mechanical characterisation of ODS ferritic alloys produced by mechanical alloying and spark plasma sintering. Mater Sci Technol 30(13):1669–1675CrossRefGoogle Scholar
  111. 111.
    Potgieter JH, Olubambi PA, Cornish L, Machio CN, Sherif E-SM (2008) Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros Sci 50(9):2572–2579.  https://doi.org/10.1016/j.corsci.2008.05.023 CrossRefGoogle Scholar
  112. 112.
    Datta P, Upadhyaya GS (2001) Sintered duplex stainless steels from premixes of 316L and 434L powders. Mater Chem Phys 67(1):234–242.  https://doi.org/10.1016/S0254-0584(00)00477-6 CrossRefGoogle Scholar
  113. 113.
    Loto RT (2017) Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems. J Mater Res Technol 6(3):203–212.  https://doi.org/10.1016/j.jmrt.2016.11.001 CrossRefGoogle Scholar
  114. 114.
    Sotomayor ME, de Kloe R, Levenfeld B, Várez A (2014) Microstructural study of duplex stainless steels obtained by powder injection molding. J Alloys Compd 589:314–321.  https://doi.org/10.1016/j.jallcom.2013.11.144 CrossRefGoogle Scholar
  115. 115.
    Li J, Xiong D, Wu H, Zhang Y, Qin Y (2013) Tribological properties of laser surface texturing and molybdenizing duplex-treated stainless steel at elevated temperatures. Surf Coat Technol 228:S219–S223.  https://doi.org/10.1016/j.surfcoat.2012.06.002 CrossRefGoogle Scholar
  116. 116.
    Momeni A, Dehghani K (2011) Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater Sci Eng A 528(3):1448–1454.  https://doi.org/10.1016/j.msea.2010.11.020 CrossRefGoogle Scholar
  117. 117.
    Shongwe MB, Diouf S, Durowoju MO, Olubambi PA (2015) Effect of sintering temperature on the microstructure and mechanical properties of Fe–30%Ni alloys produced by spark plasma sintering. J Alloys Compd 649:824–832.  https://doi.org/10.1016/j.jallcom.2015.07.223 CrossRefGoogle Scholar
  118. 118.
    Kurgan N, Varol R (2010) Mechanical properties of P/M 316L stainless steel materials. Powder Technol 201(3):242–247.  https://doi.org/10.1016/j.powtec.2010.03.041 CrossRefGoogle Scholar
  119. 119.
    Sharon A, Itzhak D (1992) Mechanical properties of sintered austenitic stainless steel—effect of silicon addition. Mater Sci Eng A 157(2):145–149.  https://doi.org/10.1016/0921-5093(92)90021-R CrossRefGoogle Scholar
  120. 120.
    Martín F, García C, Blanco Y (2011) Effect of chemical composition and sintering conditions on the mechanical properties of sintered duplex stainless steels. Mater Sci Eng A 528(29):8500–8511.  https://doi.org/10.1016/j.msea.2011.08.013 CrossRefGoogle Scholar
  121. 121.
    Dobrzański LA, Brytan Z, Grande MA, Rosso M, Pallavicini EJ (2005) Properties of vacuum sintered duplex stainless steels. J Mater Process Technol 162-163:286–292.  https://doi.org/10.1016/j.jmatprotec.2005.02.038 CrossRefGoogle Scholar
  122. 122.
    Campos M, Bautista A, Cáceres D, Abenojar J, Torralba JM (2003) Study of the interfaces between austenite and ferrite grains in P/M duplex stainless steels. J Eur Ceram Soc 23(15):2813–2819.  https://doi.org/10.1016/S0955-2219(03)00293-0 CrossRefGoogle Scholar
  123. 123.
    Jia T, Militzer M (2015) The effect of solute Nb on the austenite-to-ferrite transformation. Metall Mater Trans A 46(2):614–621.  https://doi.org/10.1007/s11661-014-2659-5 CrossRefGoogle Scholar
  124. 124.
    Liu R, Li DY (2000) Effects of yttrium and cerium additives in lubricants on corrosive wear of stainless steel 304 and Al alloy 6061. J Mater Sci 35(3):633–641.  https://doi.org/10.1023/a:1004780528202 CrossRefGoogle Scholar
  125. 125.
    Auger MA, de Castro V, Leguey T, Muñoz A, Pareja R (2013) Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering. J Nucl Mater 436(1–3):68–75.  https://doi.org/10.1016/j.jnucmat.2013.01.331 CrossRefGoogle Scholar
  126. 126.
    Olaniran O, Olubambi P, Potgieter J, Adewuyi B (2012) Influence of Cr–Ni addition on porosity and microstructure of ZrO2 (Y2O3) dispersed duplex stainless steel composite. J Mater Sci Technol 20(2):124–132Google Scholar
  127. 127.
    Han Y, Zhang W, Sun S, Chen H, Ran X (2017) Microstructure, hardness, and corrosion behavior of TiC-duplex stainless steel composites fabricated by spark plasma sintering. J Mater Eng Perform 26(8):4056–4063.  https://doi.org/10.1007/s11665-017-2840-2 CrossRefGoogle Scholar
  128. 128.
    Mariappan R, Kumaran S, Rao TS (2009) Effect of sintering atmosphere on structure and properties of austeno-ferritic stainless steels. Mater Sci Eng A 517(1):328–333.  https://doi.org/10.1016/j.msea.2009.04.011 CrossRefGoogle Scholar
  129. 129.
    García C, Martin F, Blanco Y (2012) Effect of sintering cooling rate on corrosion resistance of powder metallurgy austenitic, ferritic and duplex stainless steels sintered in nitrogen. Corros Sci 61:45–52.  https://doi.org/10.1016/j.corsci.2012.04.021 CrossRefGoogle Scholar
  130. 130.
    Falodun OE, Obadele BA, Oke SR, Maja ME, Olubambi PA (2018) Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. J Alloys Compd 736:202–210.  https://doi.org/10.1016/j.jallcom.2017.11.140 CrossRefGoogle Scholar
  131. 131.
    Mathon MH, Perrut M, Poirier L, Ratti M, Hervé N, de Carlan Y (2015) Development of new ferritic alloys reinforced by nano titanium nitrides. J Nucl Mater 456:449–454.  https://doi.org/10.1016/j.jnucmat.2014.08.039 CrossRefGoogle Scholar
  132. 132.
    Saheb N, Iqbal Z, Khalil A, Hakeem AS, Aqeeli NA, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomaterials 2012:18.  https://doi.org/10.1155/2012/983470 CrossRefGoogle Scholar
  133. 133.
    Sulima I, Kowalik R, Hyjek P (2016) The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride. J Alloys Compd 688:1195–1205.  https://doi.org/10.1016/j.jallcom.2016.07.132 CrossRefGoogle Scholar
  134. 134.
    Bettini E, Kivisäkk U, Leygraf C, Pan J (2013) Study of corrosion behavior of a 22% Cr duplex stainless steel: influence of nano-sized chromium nitrides and exposure temperature. Electrochim Acta 113:280–289.  https://doi.org/10.1016/j.electacta.2013.09.056 CrossRefGoogle Scholar
  135. 135.
    Maetz JY, Douillard T, Cazottes S, Verdu C, Kléber X (2016) M23C6 carbides and Cr2N nitrides in aged duplex stainless steel: a SEM, TEM and FIB tomography investigation. Micron 84:43–53.  https://doi.org/10.1016/j.micron.2016.01.007 CrossRefGoogle Scholar
  136. 136.
    Falodun OE, Obadele BA, Oke SR, Ige OO, Olubambi PA, Lethabane ML, Bhero SW (2018) Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN. Trans Nonferrous Metals Soc China 28(1):47–54.  https://doi.org/10.1016/S1003-6326(18)64637-0 CrossRefGoogle Scholar
  137. 137.
    Ruiz-Prieto JM, Moriera W, Torralba JM, Cambronero LEG (1994) Powder metallurgical duplex austenitic-ferritic stainless steels from Prealloyed and mixed powders. Powder Metall 37(1):57–60.  https://doi.org/10.1179/pom.1994.37.1.57 CrossRefGoogle Scholar
  138. 138.
    Marcu Puscas T, Molinari A, Kazior J, Pieczonka T, Nykiel M (2001) Sintering transformations in mixtures of austenitic and ferritic stainless steel powders. Powder Metall 44(1):48–52.  https://doi.org/10.1179/003258901666167 CrossRefGoogle Scholar
  139. 139.
    Velasco F, Bautista A, González-Centeno A (2009) High-temperature oxidation and aqueous corrosion performance of ferritic, vacuum-sintered stainless steels prealloyed with Si. Corros Sci 51(1):21–27.  https://doi.org/10.1016/j.corsci.2008.09.035 CrossRefGoogle Scholar
  140. 140.
    Capdevila C, Serrano M, Campos M (2014) High strength oxide dispersion strengthened steels: fundamentals and applications. Mater Sci Technol 30(13):1655–1657.  https://doi.org/10.1179/0267083614Z.000000000787 CrossRefGoogle Scholar
  141. 141.
    Dewidar MM, Khalil KA, Lim JK (2007) Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferrous Metals Soc China 17(3):468–473.  https://doi.org/10.1016/S1003-6326(07)60117-4 CrossRefGoogle Scholar
  142. 142.
    Noor FM, Jamaludin KR, Ahmad S (2017) Fabrication of porous stainless steel 316L for biomedical applications. MATEC Web Conf 135:00062CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of Metallurgical and Materials EngineeringFederal University of Technology AkureAkureNigeria
  3. 3.Department of Materials Science and EngineeringObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations